
ESD-TR-70-256

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LINCOLN LABORATORY

THE LEAP USER'S MANUAL

LINCOLN MANUAL 93

ESD ACCESSION LIST
Call No. ^7/ 23*3

Copy .No. f of I cys.

P.D. ROVNER

Group 23

11 September 1970

The work reported in this document was performed at Lincoln Laboratory,
a center for research operated by Massachusetts Institute of Technology.
This work was sponsored by the Advanced Research Projects Agency of the
Department of Defense under Air Force Contract AF 19(628>5167 (ARPA
Order 691).

This report may be reproduced to satisfy needs of U.S. Government agencies.

This document has been approved for public release and sale;

its distribution is unlimited.

LEXINGTON MASSACHUSETTS

A1>} YV&i

ABSTRACT

This document is a user's manual for the LEAP language. LEAP

is an extended algebraic programming language which is similar in form
8

to ALGOL. Extensions include language forms for display output and

interactive input and facilities for building and manipulating associative

information structures. The basic algebraic language is described in

Sections I through LX; the extensions to LEAP are presented in the Appendices

Accepted for the Air Force
Joseph R. Waterman, Lt. Col., USAF
Chief, Lincoln Laboratory Project Office

ii

CONTENTS

I. VARIABLES 1

A. Declarations 1

II. CONSTANTS 2

III. DYNAMIC VARIABLES 4

A. Arrays 4

B. Textarrays 4

C. Matrices 5

IV. EXPRESSIONS 6

A. Arithmetic Operators 7

B. Boolean Operators 10

C. Matrix Operators 11

D. Miscellaneous Matrix Expressions 12

E. Array and Textarray Expressions 13

F. Textarray Operators 13

G. Conditional Expression 14

V. STATEMENTS 14

A. Assignment Statement 14

B. Transfer-of-Control Statements 16

1. Unconditional Go 16

2. Conditional Go 16

3. Switch 17

C. If Statements 17

D. Iteration Statements 18

E. Compound Statement 19

F. Blocks 19

VI. COMMENTS 19

VII. PROCEDURES 19

VIII. RETURN STATEMENTS 21

IX. PROGRAM LAYOUT 22

in

Append: Lees

I. Primitives for Display Output

II. Assembly Code Option

III. Primitives for Interactive Input

IV. Text and Numerical I/O

V. Sub-Program Linkage Facility

VI. Error Detection in LEAP

VII. Miscellany

Synonyms

NOKBBF

External Procedures

GETFROMKB

Compilation Mode Options

23

29

31

39

5 2

5 6

64

Miscellaneous Reserved Functions
and Procedures

VIII. Primitives for Data-Structuring: the Associative 74
Sublanguage

IX. Primitives for Text and File Manipulation 90

iv

ARRAY

I. VARIABLES

One may declare and use VARIABLES in LEAP. A variable is an

entity which has a NAME, a DATATYPE, and a VALUE. The NAME of a

variable must consist only of alphanumeric characters and must start

with a letter. The number of characters allowed in a name is unlimited.

The DATA TYPE of a variable must be one of the following data types:

REAL

INTEGER

BOOLEAN

FIXED (i.e. fixed point fraction)

MATRIX

TEXTARRAY

REAL

INTEGER

BOOLEAN

FIXED

The VALUE of a variable is an algebraic quantity having the specified data

type. For example, if X were an INTEGER variable, it might have 46 as its

value. If Y were a BOOLEAN ARRAY, it would have an array of BOOLEAN

numbers as its value.

A. DECLARATIONS

All variables must be declared. The declaration of a variable may

occur either at the beginning of the LEAP program or at the beginning of

the outermost COMPOUND STATEMENT within which the variable is used

(see the discussion of COMPOUND STATEMENTS in Section V.E). A

typical declaration has a data type specification , a list of names, and

a semicolon. Examples:

REALX, Y, Z;

INTEGER ARRAY A, B;

A dynamic variable (a MATRIX, ARRAY or TEXTARRAY) may be declared with

information about its dimensions; for a complete discussion of dynamic

variables, see Section III.

II. CONSTANTS

Integer constants are converted to either radix 8 or 10, depending

on their form. Including sign, integer constants consist of 36 bits, float-

ing point constants of 27 bits of mantissa and 9 bits of characteristic, and

fractions of 36 bits. Omission of a preceding sign indicates a positive

number.

1. Decimal INTEGER constants are expressed by 1 to 11 digits

written without a decimal point.

Examples:

3

527

-321

923

2. Octal INTEGER constants are expressed by 1 to 12 octal

digits and are written with a terminal decimal point.

Examples:

5.

7.

770770770777.

3. REAL (i.e. , floating point) constants are expressed in two

ways, either by digits both before and after the decimal point (for example,

3 .5 or -0. 3), or by the exponential designation with an optional decimal

point:

Examples:

-2E-3 equals -0.002

.2E7 equals 2,000,000.0

2.E10 equals 20,000,000,000.0

4. FIXED (i.e., decimal fraction) constants are expressed by a

decimal point followed by 1 to 10 digits:

Examples:

.2

.37

.002

5. There is no facility for octal fraction constants in LEAP.

6. BOOLEAN constants are expressed as either "TRUE" or

"FALSE" (Note: this is not valid for typed input to a READ statement).

THUS: .

REAL

decimal INTEGER

octal INTEGER

FIXED

BOOLEAN

35.0 is

35 is

35. is

.35 is

TRUE is

III. DYNAMIC VARIABLES

A. ARRAYS

An ARRAY is an ordered collection of ELEMENTS. A particular array

element is indicated by specifying a unique subscript for the element, as

illustrated below:

(1) ^1, E2, E3 En

In (1), the "Ei" are any INTEGER expressions, "n" is the number of dimen-

sions of the array, and A is the name of the array.

Each array element has a value. The data type of the elements of

an array is specified when the array is declared (e.g. , REAL ARRAY A;).

An array may be declared with size and dimension information;

if this information is specified, then storage will be allocated at

program execution time for the array elements. If this information is not

specified, then no storage will be allocated until a statement is executed

which explicitly assigns storage to the array for its elements (see the

discussion of the assignment statement in section V-A.). The following

is the form for an array declaration with size and dimension information:

(2) (type) ARRAY (name) fa to a , b to b , . . . , z to z };

In (2), (type) is either REAL, INTEGER, BOOLEAN, or FIXED. The (name)

is the name of the array. The other parameters are explained below;

a is the lower bound on the first dimension (if there is to be only

one dimension, then a must equal 1)

a is the upper bound on the first dimension

b is the lower bound on the second dimension

b is the upper bound on the second dimension, etc.

There is no limit on the number of dimensions, and the bounds may be any

INTEGER expressions.

B. TEXTARRAYS

A TEXTARRAY is a single dimensional array of characters, each repre-

sented by its integer character code. Like the ARRAY, a TEXTARRAY may be

declared with information about its size (the maximum number of characters

in the TEXTARRAY, including the 777. character);

(3) TEXTARRAY (name) AE ;

If no size information is given, then no storage will be allocated for the

TEXTARRAY elements by the declaration. This storage will be allocated

only by a subsequent assignment statement. In (3), (name) is the name

of the TEXTARRAY, and AE is an INTEGER expression specifying the size

of the TEXTARRAY.

A TEXTARRAY element is indicated by specifying its subscript:

Examples:

IF TAj = 777. THEN .. .

777. -T V

C. MATRICES

The MATRIX in LEAP is a highly specialized entity. It always has

two dimensions, and its elements are always REAL numbers. Only one ex-

ponent is kept for all the elements; the elements are scaled appropriately.

Thus, information is lost if the values of elements differ by too many orders

of magnitude.

Matrices may be declared with no information about the number of

rows and columns (e.g., MATRIX (name);), or with such information given:

(4) MATRIX (name) aj BY b ;

If no dimension information is specified, then no storage will be allocated

for the matrix elements by the matrix declaration. As in the case of the

array, this storage will be allocated only when an assignment statement

explicitly assigns storage to the matrix.

If, as in (4), dimension information is specified, then appropriate

storage is allocated for the matrix, and all elements are initialized to zero.

In (4), a-, and b-, are INTEGER expressions. The declared matrix will have

a^ rows and b^ columns.

A matrix element is indicated by specifying the name of the matrix,

the row index, and the column index. These indexes may be any INTEGER

expressions between 1 and 256. Examples follow:

M (1,2) row 1, column 2 element of M

M (K, J + 1) row K, column J + 1 element of M

Matrices were introduced into LEAP to implement the parametric

homogeneous matrix representation for points, lines, and conies which is

described in Reference 9. LEAP has facilities for multiplying, inverting,

and adjoining matrices . A complete presentation of the operations which

apply to matrices is given in Section IV. C.

LEAP also has a facility for generating the appropriate display

instructions from a parametric homogeneous matrix description of a point,

line, or conic (see Appendix I).

Note: The word USELEAP must follow START in every LEAP program

in which MATRICES are used.

IV. EXPRESSIONS

Variables, constants, elements of dynamic variables, and/or

EXPRESSIONS may be combined by OPERATORS (e.g. + and -) to form

EXPRESSIONS • An expression has a data-type, and a value. The value is

computed by performing the indicated operation. For example, if X is a

REAL variable having 3.6 as its value, and Y is a REAL variable having 1.0

as its value, then

X + 4.2 x Y

is a REAL expression with 7.8 as its value.

Note that we would expect the multiplication to be done before the

addition when the above expression is evaluated. In LEAP, the multiplication

operator (x) is said to have "higher precedence" than the addition operator (+).

We can classify the operators in LEAP by specifying their relative precedence,

or "binding power." The remainder of this section is a tabulation of the

operators in LEAP, organized in groups by operand type, and arranged within

groups in order of decreasing precedence. Note that the expression scan is

done from left to right. When operators of equal precedence are adjacent,

e.g. , A + B + C, then the evaluation is performed from left to right, e.g.,

(A + B) + C. When operators of different precedence are adjacent, the

operator of higher precedence is treated first. When in doubt about precedence,

parenthesize.

In what follows,

A, Al, A2, etc. will represent ARRAY's

TA, TA1, TA2 , " " " TEXTARRAY1 s

M, Ml, M2, " " " MATRIX EXPRESSION'S

AE,AE1,AE2," " " ARITHMETIC EXPRESSION'S

B, Bl, B2, " " " BOOLEAN EXPRESSION'S

A. ARITHMETIC OPERATORS

The operands for arithmetic operators are of REAL, INTEGER, or

FIXED types, and may be mixed indiscriminately in expressions. The result

of mixed arithmetic is always REAL.

D

os

DC

<

3
o

CQ

OS
w
O
w
H
13

<

u
OS

os
w
CD
w
H
2

SI S3

co 5

CQ < CO <

os OS
u w
0 CO
w u
H H
2 2

a
hH [•"-

S! S3 Sj w w
< <

w
U

u
P
O
to
OS
0-

CO to to ID CO CO
ID U3

CO

<
os
o

O
2

co

c
o

c
a
c
o

Si
; FH CO «a;

< g

c
3)
E
a

a eg

c

E
(D

<

c
Q)
E
0)

3 a)

2
<

OS
co

^-s C U
n (0 W

it <

- -H CO <
a)
o

53S

(0
ro

CO

3

o
i-,

o
X!
E
3
C

CD
U
<0

CO

c

T3

CO

CO

o
S o v?

en

S 1

w
53
H

cu
ro

*3 E

cu
-a
c
o

CD
CD co -^ "E« P ,

co

CO

CD

si
-<•

9
u

(0

"£-? O

^J > *•>

o
I—I

H
O
u
co
co
u

^ 0 3

<D
>
c
o
o

3
*"

3
O
i-5
PL,

C

o ^
~ DS
u M

s o
> w
C H

Q

53
O
OS

3 gg S3

c
(0

o ^
~ OS
E w
a3 O
> co
C H

to

u
53
as
H

(0
a

•—t

c
o

u
ro

CD

CD
3

p-H
ro
>

W CO

< <
+ 1

CD

CO

o
co

-Q
fO

CO

co 3
3
a £

fc &
ro (0
c c
3 3

OS
to
Cu
o

Q.

a u •PH

rn '~
U

o co
a X
3 3
CO to

(0
E
E
o
u

Q

5C

z: -c

co
(1) CO

to OJ
.1) U]

C CD
•«-< XI
r 4-1

0) C

!f)
0)

a (0
a

si
X}

73
CD

•a
CD
u
CD

a
CO

CD
CO

CD

£
c
CD
k,
tO
a

CO
o
CO
CD

-C
4->
C
o
u
ra
a

ro
o

z
2 -+ ±
o
53
(L,

>

H

D
CO
w
OS

«
CJ

O
w
H
2
>—i

w CJ CJ
< < <

OS
w
U
w
H

Si 52 62 en

en
c

XI 0
••-t

>, 4->

-Q id
*-> CD
-^H a X! o

SI S3 62

u
CJ

P
CJ
CJ
u
PS
Q,

LO LO in CO CM

w
<D
C
o

CM
CJ
<

2

O

CO

CJ

<

CJ
<

CM
CJ
<

CJ
<

CNj CM CM

3 62 8i
-V- + I
i—I r—I r-4

S2 62 S2

T3 CD

•I-I CD 0) X
•f-> OH

IS X!

j3 (0
co
•H

CJ

O
CO Uj CO c CJ •
CO —i HH 2 H OJ

G
O
X

X
0

co X

2 o
1_

2 £2
C •—*
+J
ro 4-J

X
•—<
CJ
< X

en

0)
X

(D
X
•!->

c
0

c
o

o
i—i

0 --*
"3.

c
o x

CO

>-
O

CD

CO

03

o
(D

CO

CO

CD X

C
o

•<-•

o
ro

CJ

2

•—1
3
£

CO

>
-a

4->

x
IN

c 3
•—t

ro
>

X
•*->

2
o
ra

3
•—i
ro
>

u.
a
X
CD

CO

*->
CD

+->

-a
-a
(0

+->
X
3
CO

CM

S2
ii

.—<
62

CO

C
o
*-"
RJ

—i
CD
1-.

O
a

CD

E
x

(O

CM CM <M

62 62 62
< > ©
•—I I—t i-H

62 62 62

O
^-*, 1
OS CD

o O >
CD co
CO

u
CD

c 3
o

C C X
-.-4 3 (D

—< •—t •—i

(O ro ro
u O O

«~4 •^ -~H

Oi D> o>
o O O

to
•>->

w

i
o

I
*

CD

CD
C —*
X
0
(0
B
c

E
0

—i a
B
o o

CD
C
o
ro
co

CM

<
CJ
OH

o

o
-V-+ I || XV A VI Al < > ©

CJ
H
O
2

10

B. BOOLEAN OPERATORS

OPERATOR MEANING

"NOT"

FORM

~B

PRECEDENCE

3

RESULT

/-^/ B

A "AND" Bl A B2 2 B

V "OR" Bl V B2 1 B

© "exclusive OR" B1©B2 1 B

w

an

11
CC OS
u w
O O ~
UJ UJ i-4
H H <

5 S g
2222223332220QCO

W
O

u
a
U
w
a.

10 m io i/> CO CM CO i-H rH

2
DC o

2
(M CO CM

2 2 2
X \ _ 2 ^

2 ~2 3 S 2 2 *§ S

CM CM CN CM

2 2 2 2
+ I II X

|5 2 i—I f—I >—I t-H

= . 2 2 2 2

w
»v

O
< o
K z u l-H

O §
W

t—1 2
2
H
<
2

oj
to

>
C

o
CO

o
a
to
c
9
4a

c
o

*rH
-t-J

u

3

c
O

10
0

a a
3
6

o •—<

X

t—I

o

c
o

T3
10

X
en

X

c
o

**—I
XI
(0

to

I

CD
XI
£
c

CO

c
£

o o

u
0)
X

6
C

C

c

a)
•!->

X)

X
>•

—I
a.

3
6
9
(0
o
CO

C
o

T3

ra

X
s

2

o
C

OS
w
a-
C

,-, ^ X X \ c
o
c = I +

CO

12

D. MISCELLANEOUS MATRIX EXPRESSIONS

FORM MEANING

AE1#
AE2 BY AE3 A MATRIX having AE2 rows and AE3 columns,

where all elements have value AE1.

^ AAE2 BY AE3 A MATRIX having AE2 rows and AE3 columns,
where all off-diagonal elements have value
0.0, and all diagonal elements have value AE1.

M (AE1 AE2)
AE3 BY AE4 Submatrix of M, starting at row AE1 and column

AE2, for AE3 rows and AE4 columns.

13

a
O)

CO
-^-1

ra
U o c

IM

-a 0) o
c N

O

co
c

Q) CJ
X

~J 1
W-H CO -5
o N

co
5 -—4

D»
es *-» c

3 c CO

c CJ 13
HJ u x

(3 •*-< •
u 3 to o 1—1

2
i—. rO c

•4-1
o 0

4-J

>
co
+-»
•*H

o
S

2 1—1
ra

2
o

.—1
a to

a
cr
o

CO

(0 ;g -~-4 _
ra 4-1 u

co
IB a

o <
J3
c
o

-~H

a o
o
>
(3
x

CO „ < *-»
ca CO CO
o
a

C
0

1—I
1—1
1—I

X CO c 00 c
CO

c
o

o
H-J §

£ 0 ca s -—i a 5 H •a CO

3
pG

r—t

3 ^
•#H

3: ,

£ o
IH
cu ei N

§ O
H .*-»
X XI w a)
H N

(0 *J .
ra C

CD

3
•—i

ra

•4-*

c
0

-^H

CO

CO > CO
co
4-»

-^H x X
CO u CD

ra X B.
CO

ra
5 w

U
X

«4-4

o w
c X 2 o u i—i

CO ra c
CO CD ra
o » CD
a
X
CO

CO
•(->

C
a)

XI

•0

CO S 3
--H 0) 0
x •—t X
H CD w

c
o

-<-H

CO
co
CD u
a
X
CD

3
H
X u
H

10

co

X
H

co
H
XI
!=)
co u
OS

03 CQ

DS
PJ

o w
H
2

<

2 3 3
as H H

O II X
OH

r-H .—i <
< < H

CO

2
C
i—i
CO

CO' rx
es a.
x
rx

<

cs
<

X
X
H

Q
o

CM

O

O
2

OH

CO

w H

H £
>. 3

cr
CD
C

(0
3
cr
w

CO !_
IH CD
CD +y

o "
rO «-,

2 x;
6 °
o£

I a
3 73

H-l O
o c
c +-•

o 2

DS
o
OH

CO

O

§
OH
OH

O

II \ =

14

G, CONDITIONAL EXPRESSION

General form: (B=>E1,E2).

This expression has either El or E2 as its value, depending on whether the

BOOLEAN expression B has value TRUE or FALSE, respectively. El and E2

are expressions which must have the same data type. This may be any

allowed data type, including MATRIX and ARRAY, for example.

V. STATEMENTS

There are a number of imperatives (called STATEMENTS) in the.

LEAP language. These are used to modify the values of the program

variables and the flow of control through the program. All statements in

LEAP must be terminated by one of the following, depending on context:

END

ELSE

A. ASSIGNMENT STATEMENT

General Form: <expression> - <variable or element of
a dynamic variable>;

This statement causes the value of the indicated variable to be reset to the

value of the expression.

Examples: REAL X, Y;

MATRIX M;

4. 0 -+ X;

X x 2 .0 - Y;

°-0#3by3^M;

1.0- M (3, 3);

Data type conversions take place where required and allowed. The following

table shows the allowed and resulting conversions. Blanks indicate that the

conversion is not allowed.

15

V\>^ VARIABLE
>v TYPE

EXPRESSION^V.
TYPE \ REAL FIXED INTEGER BOOL.

REAL Real
*

Fixed

*
Integer
(rounded)

FIXED Real Fixed — —

INTEGER Real — Integer —

BOOL. — — — Bool.

The assignment statement may in fact be an expression if it is nested. This

facilitates multiple or intermediate stores. For example,

1 - A - B;

assigns the value 1 to both A and B.

The subword form may be used as a variable in an assignment state-

ment. Example:

INTEGER X;

•

3 - X (1 "• 4);

A special case of the assignment statement is the sub-matrix store

command. Example:

M x N - M (3,5);

The matrix expression on the left will replace the sub-matrix of M whose

upper left-hand element is in row 3, column 5. If the new sub-matrix will

not fit into the indicated space, an error will be indicated at run-time.

No check is made for overflow: strange things may occur if a REAL number
larger than or equal to 1.0 is converted to a FIXED.

16

<statement label>;

B. TRANSFER-OF-CONTROL STATEMENTS

Bl . Unconditional Go

General Form: GO

GOTO

GO TO

The GO statement causes a transfer of control to the statement indicated by

the "STATEMENT LABEL. " A STATEMENT LABEL is a sequence of alphanumeric

characters, starting with a letter, which is assigned to a statement by

prefacing the statement with <statement label> "" .

Example: 1.0-»X;

LI w x+ 1.0-X;

GO TO LI;

B2 . Conditional GO Statement

General Form: GO

GOTO

GO TO

 => <label 1>,< label 2> ;

This statement causes control to go to either statement label 1 or statement

label 2, depending on whether the BOOLEAN expression is true or false.

17

B3. Switch Statement

General Form: SWITCH VIA <INTEGER expression> TO <list of
statement labels>;

This statement causes a transfer of control to the statement label indicated

by the value of the INTEGER expression. If this value is out of bounds , an

error message will be given.

Example: INTEGER I;

SWITCH VIA I TO LI , L2 , L3;

If I = 1, then control will go to Ll.

If I = 2 , then control will go to L2 .

If I = 3, then control will go to L3.

C. IF STATEMENTS

General Forms: (1) IF THEN <statement 1> ELSE <statement 2>-,

If the BOOLEAN expression is true, <statement 1> is executed; if it is false,

<statement 2> is executed. If there is a "dangling ELSE" clause, it is

associated with the innermost IF clause. Example (la and lb are equivalent):

la. IF <B1>THEN

IF <B2> THEN
< statement 1-*

ELSE
Statement 2>;

lb. IF<B1>THEN

BEGIN

IF <B2>THEN
<statement 1>

ELSE + + , - 'statement 2>

END;

(2) IF THEN <statement>;

the <statement> is executed only if the BOOLEAN expression is true.

The word IFNOT may be used instead of IF in the above forms; in

this case, the BOOLEAN expression is complemented, and then examined.

18

D. ITERATION STATEMENTS

General Forms: (1) FOR Ei - P STEP E2 1 THRU ! E3 DO S;

where E\, E2 , E3 are arithmetic expressions, P is a non-dynamic variable

or an array element, and S is a statement.

This statement causes statement S to be executed once for each new

value of P, the iteration variable. The statement is executed as if it were

written as:
El -P;

LI" IF || P> || E3 THEN GOTO L2; (see note 1 below)
S;
P + E2 - P;
GOTO LI

L2'

(2) FOR El - P STEP E2 I UNTIL ! B DO S;

where E\ , E2 , E3 , P and S are as above, and B is any Boolean expression

Execution of this statement is analogous to the previous statement. Ex-

ecutions of statement S continue as long as:

(a) B is true (WHILE)
(b) B is false (UNTIL)

• "»"!-' |T£| —
where E^ , P, B, and S are as above. This statement behaves as indicated

in (2) above, except that the iteration variable is not incremented.

where B and S are as above. This statement behaves as type (3), but has

no iteration variable.

CONTINUE STATEMENT

This is a statement which causes a jump to either the incrementing or

testing part of the FOR statement when execution of the remaining body is

not desired.

Example: FOR 1 - P STEP 1 TO 10 DO
BEGIN IF P = 7 THEN CONTINUE:

END;

would cause execution for values of P = 1 through 6, 8 and 9.

Note 1: For TO, this operator is s; for THRU, the operator is >. If the
iteration variable changes sign or ever equals zero, then another
form of the FOR statement should be used.

19

E. COMPOUND STATEMENT

It is often desirable to have a number of statements act as a single

statement. A group of statements which is preceded by the word BEGIN

and followed by the word END is called a COMPOUND STATEMENT. Note

that compound statements may be nested.

Compound statements may have "local" declarations of non-dynamic

variables (of types REAL, INTEGER, BOOLEAN, and FLXED) immediately fol-

lowing the word BEGIN. These variables are "local" in the sense that they

may not be referenced from outside of the compound statement, but they may

be referenced anywhere between the current BEGIN-END parentheses. The

NAMEs of these variables may have been used in an outer compound state-

ment or in the main program declarations. In this case, a NAME always

refers to the variable declared in the current innermost compound state-

ment. Note that one may GO into the middle of a compound statement.

F. BLOCKS

A compound statement in which dynamic variables are declared is

called a BLOCK. Iteration statements, [AJ . . . [EJ statements (see

appendix 2), and PROCEDURES (see section VII) are also BLOCKS. One

may not GO into the middle of a BLOCK.

VI. COMMENTS

Comments may occur anywhere in a program where a statement or

declaration may occur. Comments begin with the word COMMENT, and

end with a semi-colon. Any string of characters (excluding semi-colon)

may appear in between.

VII. PROCEDURES

A PROCEDURE is a subroutine which may or may not expect input

parameters and may or may not return a result. A PROCEDURE must be

declared before it is called. A PROCEDURE declaration must occur in a

declaration portion of the LEAP program (see section IX) in one of the

20

following forms;

(1) <REAL, INTEGER, BOOLEAN, or FIXED> PROCEDURE
<name of procedurexplist>; <statement>;

(2) PROCEDURE <name of procedure><plist>; state-
ment^

In the above, the <jiame>is any string of alphanumeric characters,

starting with a letter. The <plist>is a list of "parameter declarations,"

separated by semi-colons, preceded by {, and followed by }. If the pro-

cedure takes no parameters, the <plist> is absent. A "parameter declara-

tion" consists of a data type specification, followed by a list of names which

are separated by commas.

For example, the declaration of a PROCEDURE to find the largest

number in an array and store it in a specified cell would look like this:

PROCEDURE BIG {INTEGER ARRAY A; INTEGER AM, AB};

BEGIN INTEGER I;

Aj -AB;

FOR 2 -I STEP 1 UNTIL I>AM DO

IF A > AB THEN A -* AB;

END;

In this procedure, A, AM, and AB are procedure parameters. They represent

the true arguments given the procedure when the procedure is "called." Two

additional declarations are allowed in a procedure declaration to describe

arguments. They are:

LABEL L,,L, . ..Ll
and 12 n

(type) PROCEDURE P , ?2> P^ (Again, type is optional)

Examples: REAL PROCEDURE PYTHAG [REAL A, B] ;

INTEGER PROCEDURE AVG [INTEGER I, J]

PROCEDURE TEST [REAL PROCEDURE P; LABEL TAG!;

A procedure "call" may occur as a statement or an expression depend-

ing on whether a data type precedes the word PROCEDURE in the procedure

21

declaration. A procedure which is to be used as an expression is called

a FUNCTION. The procedure call has the following general form:

<procedure name> <-a list>

The <a list>is a list of expressions, variables and elements of

dynamic variables, separated by commas, preceded by {, and followed

by }. If the procedure takes no parameters, the <a list>is absent.

The data type of each element in the <a list>is compared with

the declared data type of the corresponding element in the <p list>, and

an error is given if these do not match. For example, the following is a

statement calling the procedure declared above:

BIG [LIST, 100, LARGLST];

where LIST is the name of the array, 100 is the maximum size, and LARGLST

will contain the largest element after the procedure is called. Note that

there are two kinds of parameters in the above example:

(1) parameters which are not changed by the action of the

procedure, but whose values are used (VALUE parameters:

LIST and 100, for example)

(2) parameters whose values are changed by the action of

the procedure (REFERENCE parameters: LARGLST, in

this case).

In LEAP all variables and dynamic variables may be passed to pro-

cedures as REFERENCE parameters; also, elements of ARRAYS may be

passed as REFERENCE parameters. However, TEXTARRAY elements, subword

expressions, and MATRIX elements may NOT be passed as REFERENCE para-

meters to procedures.

VIII. RETURN STATEMENTS

Normally, procedures and functions return to the calling statement

at completion. However, an additional statement is provided to cause the

procedure or function to return from anywhere within the procedure body.

General Form: RETURN E;

where E is required for functions and not allowed for other procedures.

22

E must be of the same data type as the function. This statement causes

the procedure to return to the calling statement. If the procedure is a

function, then the function value is E.

Example:

FUNCTION REAL PROCEDURE LARGEST {REALX, Y\;

DECLARATION

FUNCTION

CALL

IX.

IF X >Y THEN RETURN X ELSE RETURN Y;

LARGEST {4. 0/A, 2 . 0/B1 + 5 . 0 - A;

PROGRAM LAYOUT

Each LEAP program must start with the word START and finish

with the word FINISH. The remainder of the program consists of two separate

parts: a sequence of declarations, followed by a sequence of statements.

Example:

START

REAL X, Y, Z;

ARRAY A |l to 40[;

L^X+ 3.0 -Y;

GOTO ' L;

FINISH

23

APPENDIX I

PRIMITIVES FOR DISPLAY OUTPUT

The display output facility in LEAP consists entirely of a collection of

library procedures for constructing and modifying a "picture data structure".

*
The picture on the screen at the console is generated by a display processor

which accesses and interprets picture-drawing commands from this picture data

structure. Typical commands to the display processor are:
**

1) Place a dot at a specified position on the screen.

2) Draw a line or conic segment from a specified screen position

with a specified slope and length.

3) Display specified text starting at a specified screen position.

4) Call a "display subroutine", to be centered at a specified

position relative to the current frame of reference.

The "picture data structure" is simply a collection of display subroutines (called

GROUPS), each having a unique 16-bit integer identifier (ID). Each display sub-

routine (GROUP) consists of a collection of display ITEMS, each having a 16-bit

integer identifier (ID) which is unique within that collection of items. There are

two kinds of display items:

1) A linear sequence of commands for drawing simple picture fragments

and moving the beam, and

Effectively a separate, special purpose computer (see reference 1).

All positions are REAL expressions, ranging from -1.0 to +1.0.

24

2) a "use" of a display subroutine, which causes the indicated

picture to be displayed as a subpicture of the group.

The library of procedures for constructing and modifying display groups and items

is tabulated below. Note the facilities for blanking items, drawing dotted

lines, moving the unintensified beam, deleting groups and items, and creating

uses. Groups are created automatically when required: e.g. when a use is

made of a non-existent group; when an item is "put" into a non-existent group.

When a group is deleted, all uses of it are automatically deleted. Display

subroutines (groups) are not re-entrant: the "structure" of the picture resembles

a tree.

One creates the first kind of display item as follows:

1) Declare the ID of the display item (a 16-bit integer) with a

"SETITEM" call,

2) Put points, lines, conies, and/or text into the display item via

PUTPNT, PUTLINE, PUTMAT , and PUTTEXT calls, and

3) Put the display item into a group via the PUTITEM call. (If the

display item is put into group zero, it will be displayed.)

*
The line will be drawn from the last position of the beam.

The PUTMAT routine expects as input the parametric homogeneous matrix
representation of a point, a line, or a conic. For further information about
matrix representations of picture parts, see Reference 9.

25

As an example of a LEAP program which uses the display output

facility, we have written down a program to display the scope diagonals:

START

CLEARS COPE;

SETITEM {if;

LOADPNT {-1.0, -1.0} ;

PUTLINE {2.0, 2.0};

PUTITEM {o|;

SETITEM {2J;

LOADPNT {1.0, -1.0 } ;

PUTLINE {-2.0, 2.0 };

PUTITEM { 0 } ;

FINISH

26

H
P

P
O

co

3 *-<
U
3 u
CO

•—i

a
CO

a
N

—i

-—i

<D

C

>, ?s
I4H
•PN 1—1 0) c
co
C CO

0)
c/;

0) •-H •*H o -*-» co "O +-> CO
c c -»-<

a) 0)
a) 0)

4-1 - c •M T> c '~* +-• c , , <<-l

o -*-• Q.^ u u 3

to

•a

XI

"d
o
-a
-4-J

X "a?
c

-.H
• 1

T5
co

4-*

o
c V

I,
ex

ce

cl
ea

re
d

Q.

ro

CO

-a

a)

3
XI

E
0) y

it
em

 b

e)

c
o
—i

co
CO

rrj
0)
X

to

B
(0

o
o

0)
1 1

1—1
1—1
1—1

* ET
IT

E1

is
 n

o
t i-,

o

7J

4->

i—4 d
is

p
la

ge

 t
u

b

CD
IH
a
X

4->

c

X

o

4-J

o o
-a

Q

w
o ,2

0)
•4-J

u

ex
to

•a

j. to
c O

0) o •M (0 fO cu IH 3
-<-l

+J fcj w

eg, (p
o

si
t

>
o

5
u

2.
u

3

Si
CD
a)
10

-A-
CO

S-i

O

(s
im

il
a

it
em

 b

e

01

+-•

c
CD

b
3
O (t

h
e

cu

to
 t

h
e

o
Cu
co

es

Q u
O
O
cu
Q w
>
OS
w
CO
u

U U

o o
2 2

A
a
i—i

E
Q)

•a
y

A c
o

co
O
a

v

A
c
o

(0 "H
-H W

A/

<
V

A
c
o
co
co
a) u
a
x
0)

X
•—4

w
O
a

A
c
o

co
O
Q.

>H
V

g * ft 2 ft <

5 5 Jt £ s s 3

w
Q
O

z
A
C ©•
O A

••H •
CO

CO
P

CD
1* a
O, 3
X O
CD <-,

Di
X

§
H
< a

CO

.v.

6
•—I

E
CD

fO

a
CO

•a
v

w
o
w
H
Z

Xi

CD
oo
V

w

o

w

<

U

S3

w
U
o
a.

w

O
u
CO O

2
PJ
H
i—i

H

H

H

u

1-1
H

< 1 cu

9
as
l-H

9

W

i—i

-1
H
O
Q
H

5
H
O
Q

W

Q
O

w
cu

Q
l-H

w
H
i—i

H
W
00

Q
H

P w ib P P b O O P P w w P u H CO cu CU 0u Bu •-I h-l Cu Cu 00 a: Cu

2
M
H
i—i
w s
O
H
00

27

w

<

w
S3
Q
w
O
O
CU

H
S3
cu

13
(1)

C

c
0)

X5

CD
o
c
c
~

ro
.—i a
in

ca
—i

G
<D

0)
J3

a
o,
3
o
u
Cn

>,
ro .—)
ft
Cfl

-F-H

T3
V

A /\ -

CO 2
Q
i—i Q

i—i
>—1

w 3 3 6
H o O 0) w t-i S-, -M

2 O* & •—(

a >i >, >,

1 i—i
a.
w

,5 .—i
a
to

.V. .V.
-a
v

£
0"

ro
•—i

w

T3
V

I 1

E
a;

ro
.—i a
in

T3
V

ro
i—i a
to

•—i

V

ft &

O) u.

ro
ft
W

-a
. v.

ro
i—i
ft
co -^

X3
V

w
o
O

H W

W

• i ^*

o
Q
V

ft*

o
Di
CD a.

S3 3
DQ

&
CD
+-"
C

CD

c
CD

CD U

O >H

&
V

A

A CD r-*-»

s
CD

+->

a
o

CD
•(->

C

+->
C
CD

4.
CD

4-"
S-, CD CD C

-^H CJi U

V
CD

>, >, V
O

ro ro „,

CD

.—i
ft
CO

•—i
a
CO a

ft

73

ro
XS

ro
3
O

o a
V

CD
+J
0)

CD

CD CO
CO

O CD
O J3 +->

3
15
3

J5
4-1
o
Q

4-1
O

Q
i—i

C
CD
O

X

V V 5
CD

i—i

A~
CD
0
c

%
u
c

C
V

A~
ro ro Q

OH +-> 4-» i—i

3
O
i-,

m
c -—<

CO

C -—< a
3

Di 4-1 IH O
o
Q
i—i

v

CD
ft

w
U

O
Cu CU Oi

W oi aj oi
O O O 3 B

CQ |j _1 w w
25 pq H CO CO
S3 Q Q D &

C7>

ro

I-.
Di A

CD o o w
•y -y £

ro
i—i a

Cfl

p a
.V V y.

w
CO
S3

s

X3
CD

B
ro

C
CD

X!

CD
U
C
o

CD
>,
ro

"a
10

• --I

en

CD
U
C
ro

4-<

ca
C

CD
x:
H

28

NOTES

(1) The X and Y coordinates of the display run from -1.0 to +1.0

(2) All ID'S are INTEGER expressions

(3) All positions are REAL expressions

(4) The PUTITEM procedure does not re-initialize the display item

buffer. This implies that one may build a display item and copy

it into more than one group. Also, one may build a display item,

copy it into a group, then add more to the display item, copy it into a

group and so forth.

29

APPENDIX II

THE ASSEMBLY CODE OPTION

A. General Description

A brief version of TX-2 assembly code has been implemented in LEAP

allowing the assembly and execution of machine code in LEAP programs. The

current implementation has no macro facility.

Format

To begin assembly coding, the user types j~A~| . This character

causes the compiler to look for MARK S*information. fE~[marks the

end of the assembly information and the compiler returns to normal LEAP

processing. The form QT) [1] ; is equivalent to a statement in

LEAP.

C. Restrictions and Notes

1. Equalities are permissible, but all symexes used in forming

the equality must be defined.

2. The special symexes A, B, C, D, E are not automatically avail-

able, although they may be defined as equalities by the user.

3. Configs, hold bits, bit instructions, double indexing, and RC's

are allowed. When defining a bit, however, it is necessary to separate

the quarter-bit number by a comma (not a period).

Example: SKN. _ YB

Configs and subscripts must also be single symexes.

4. When reference is made to a LEAP variable, the address of the

variable is used. This means that in the normal case LDA 0 will put the

value of Q (a LEAP variable) in A.

5. All MARK 5 equalities and instructions must end with semicolons,

except for the last where (T) is used.

6. Forward references are allowed in restricted cases. These are:

* MARK5 is the assembler for TX-2 .

30

a) No operation is performed on the symex.

b) The symex is defined later by a •*•' in LEAP or a '•»•' or

'-' in MARK 5 .

7. Tags are assigned by use of a '--, or '-' followed by a MARK 5

instruction, constant, etc.

8. There is no comma convention and constants follow the rules

of LEAP. Octal integers must therefore be followed by a decimal point.

Example: JED 56- and LDA X

9 . One may not refer to a label or equality which has been defined

in [A| . . . [E] statement from anywhere outside that statement (e.g.,

equalities are "local" to the [Aj . . . [EJ statement in which they are

defined.

31

APPENDIX III

PRIMITIVES FOR INTERACTIVE INPUT

The facility for non-typewritten interactive input to a LEAP program

has two parts:

(A) a set of reserved variables and functions which directly

indicate the current state of the indicated input device

(see Table IIIA), and

(B) a simple sublanguage for communicating with the part of

the time-sharing system which handles input interrupts.

The interrupt sublanguage allows LEAP programs to "activate" the
2 11

various input devices at a TX-2 console, ' thereby asking the time-sharing

executive to gather relevant information at the exact time that an input

event occurs, and report this information to the user when he is next

active. The user may ask for certain status information to be recorded

along with the specified input event. For example, he may ask that the

real-time clock reading be recorded whenever a knob changes state:

(1) ACTIVATE 0KNOBS REPORTING 0RTC*;

The time-sharing executive reports input information to the user by

maintaining a list of events, each with appropriate cause and status infor-

mation. The user may ask for information about the next event; an entry will

be removed from the list of events, and the cause and status information will

be reported to him. If the list is empty, he will be notified. The

user calls a reserved procedure to get information about the next event:

GETNEXTINT;

This procedure stores the appropriate cause code (an INTEGER) into the reserved

variable aCAUSE, and device status information into appropriate reserved

variables (e.g. if the event were a knob change, the state of the four knobs

would be copied into the reserved variables «KNOB 1, «KNOB 2, «KNOB 3, and

"KNOB 4). If a request to report the real time clock reading accompanied the

knob activation statement (as in (1)), the reading taken at the time of the

event would be stored into the reserved variable oRTC. If the list of events

'reserved words in the language are in CAPITALS.

32

is empty, the GETNEXTINT procedure would store zero into aCAUSE and

then return.

The input sublanguage consists of three special statement forms,

and a number of reserved variables, procedures, and functions.

(1) Statements in the input sublanguage:

(a) ACTIVATE < input device name> ;

(b) ACTIVATE < input device name>REPORTING< report list>;

(c) DEACTIVATE < input device name> ;

The "input device names" are listed in Table III B. Note that there are

four interval timer device names, each of which may be activated with a

unique interval time, in milliseconds. The minimum interval time is 64

milliseconds; the maximum is 2 milliseconds.

The "report list" consists of one or more "report specifications,"

separated by commas (see Table III C).

(2) Reserved variables in the input sublanguage are presented in

Table III D. Reserved functions are presented in Table III E, and reserved

procedures are shown in Table III F.

33

NAME

RTC

KNOBS

TOGS

EIR

COR

KNOB1

KNOB2

KNOB3

KNOB4

TBLTX

TBLTY

DATA TYPE

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER

FIXED

FIXED

FIXED

FIXED

FIXED

FIXED

TBLTSW1 BOOLEAN

TBLTSW2 BOOLEAN

TBLTSW3 BOOLEAN

TOG1 BOOLEAN

TOG 2 BOOLEAN
•

TOG9
•

BOOLEAN

META BOOLEAN

TABLE III A: RESERVED VARIABLES AND
INPUT.

NOTES

real time clock register

knob register

reg. 3776210

reg. 377621

12

reg. 3776220 o
quarter 1 of knob reg.

quarter 2 of knob reg.

quarter 3 of knob reg.

quarter 4 of knob reg.

x-coordinate of tablet
stylus

y-coordinate of tablet
stylus

switches which become
TRUE as the tablet stylus
moves toward the tablet
surface.

BITS 1.1 thru 1.9 of
reg. 3776218- if the
bit is a 1, value is TRUE
0 => FALSE.

META bit on knob register

FUNCTIONS FOR INTERACTIVE

34

DEVICE NAMES VALUE OF aCAUSE
(in octal)

6TARGET 1

3TRACKSTART 2

3TRACKEND 3

pSWCHANGE 4

3INTMI {<# millisecs>} 5

3INTM2 {<# millisec :s>} 6

3INTM3 (<# miHisecs>1 7

3INTM4 {<# millisec :s>l 10

3INTMS 11

3KNOBS 12

3EIR 13

3KEYBOARD 14

3INKING 17

3 TRACKING

AUTOMATIC REPORT
(in addition to o-CAUSE)

c/ITEMSEEN, aGRPSEEN

aTBLTX,oTBLTY

<*TBLTX,aTBLTY

o-TBLTX,crTBLTY

aKNOBl, aKNOB2 , Q-KNOB3 ,
<yKNOB4

a-EIR

o-NUMSTROKES

TABLE III B: INPUT DEVICE NAMES AND THEIR OCTAL CODES, AND
RESERVED VARIABLES AUTOMATICALLY REPORTED.

REPORT SPECIFICATIONS

0KNOBS

3EIR

gRTC

g TBLTPOS

NOTES

causes Q-KNOBI thru c^KNOB4 to be set
up.

causes aEIR to be set up.

causes Q-RTC to be set up.

causes aTBLTX and aTBLTY to be set up,

TABLE III C: REPORT SPECIFICATIONS

35

RESERVED VARIABLES DATA TYPE

QKNOBI

<>KNOB2

Q-KNOB3

aKNOB4

aTBLTX

aTBLTY

aEIR

aRTC

alTEMSEEN

aCAUSE

aGRPSEEN

aNUMSTROKES

FIXED

INTEGER

TABLE III D: RESERVED VARIABLES FOR THE INTERACTIVE INPUT
SUBLANGUAGE.

FUNCTION AND PARAMETERS DATA TYPE

NUMPOINTS {<stroke number>} INTEGER

FIXED

NOTES

value is the numbar of ink
points in the indicated stroke

X and Y coordinates of the
indicated ink point

INKX {<stroke number>,<point
number>}

INKY {<stroke number> ,<point
number>}

TABLE III E: RESERVED FUNCTIONS WHICH ARE RELATED TO THE
INKING EVENT.

36

PROCEDURE NAME

CLEARINK (no parameters)

NOTES

This causes the ink to be removed

from the display, and the inking

machinery to be re-armed.

TURNOFFINTS (no parameters)

CLEARINTS (no parameters)

Turn off all interrupt devices.

Clear out the list of input events.

SETPENMODE {<display group ID>,
<pen mode: 0,1,2, or 3>} See Note 5 below.

GETNEXTINT (no parameters) The GETNEXTINT reserved procedure

reports the next occurrence of an

input event by setting up aCAUSE

with the appropriate code and

setting up the appropriate reserved

variables. If there is no event

recorded, aCAUSE will be set to

zero.

TABLE III F: RESERVED PROCEDURES FOR THE INTERACTIVE INPUT
SUBLANGUAGE.

37

SAMPLE PROGRAM

This program displays a smooth line for every line drawn in with

the tablet stylus.

START

INTEGER

TAGl-

TAG 2*

FINISH

ITEMNUM;

ACTIVATE p INKING;

0 -ITEMNUM;

CLEARINK;

GETNEXTINT;

IFaCAUSE = 0 THEN BEGIN SHADE; GOTO TAG1 END;

IFaCAUSE ?* 17. THEN HELP;

IF aNUMSTROKES ? 1 THEN GOTO TAG2;

SETITEM {ITEMNUM + 1 -ITEMNUM};

LOADPNT { +INKX [1,1], flNKY {1,1 } };

PUTLINE ftlNKX {l, NUMPOINTS {1 }}- INKX {1, 1 },

t INKY f 1, NUMPOINTS { 1} }- INKY {1,1}};

PUTITEM {0};

CLEARINK;

GOTO TAG1

MISCELLANEOUS NOTES

l) One can optionally specify an "inking wait duration" (i.e. time

delay between lifting the pen from the tablet surface and

receiving the inking interrupt) by specifying an integer value

between 0 and 100 when activating inking:

ACTIVATE SINKING {<INTEGER >]

e.g. ACTIVATE PINKING {40} REPORTING 0EIR;

The increment is 5 ms; the default (normal) delay is 500 ms

(1/2 second).

38

2) -1 <coordinate value <1

3) "ACTIVATE ^TRACKING" simply renders the tracking dot

visible; no input event is associated with this input device.

4) CLEARINK must be executed (after activating inking) before

inking will occur.

5) The "pen mode" attribute of a display group specifies the

relationship between the picture indicated by the group and

information to be reported to the user when a target is "seen"

by the pen. In the case where a target has subpictures (uses)

as parts, the user must specify which item in which group is

to be reported when a target is seen. He does this by specifying

a "pen mode" for each display group; this indicates which group

is the "working level": item ID's from this group are reported

when a target is seen. There are four pen modes:

0) Normal (default) mode: look above here for the

working level.

1) Picture parts here and below are invisible to the

pen.

2) (Unused).

3) Working level: this group contains a group of

targets; report the ID of this group and the ID of

the item seen by the pen.

6) a) 'a' prefixes denote reserved variables which are stuffed

by GETNEXTINT (e.g. o-KNOBl).

b) "0" prefixes denote device names (e.g. pKNOBS).

c) No prefix (see TABLE III A) denotes a reserved variable

or function whose value is a direct reading of the

indicated device status when the reference is made

(e.g. KNOBl).

39

APPENDIX IV

TEXT AND NUMERICAL I/O

CONTENTS:

A. TEXT AND NUMERICAL INPUT

TABLE Al . RESERVED VARIABLES AND PROCEDURES
TABLE A2 . DATA TYPE CODES
TABLE A3 . ALLOWED DATA TYPE CONVERSIONS FOR THE READ STATEMENT
TABLE A4. READ ERROR CODES

B. TEXT AND NUMERICAL OUTPUT

1. TEXTARRAY OUTPUT STATEMENTS

a. PRINT
b. XEROX
c. SHOWTEXT
d. S TO RET EXT

2. FORMAT STATEMENTS

3 . FORMATTED OUTPUT STATEMENTS

a. PRINT FORMAT
b. XEROX FORMAT
c. GATHER FORMAT

4. THE OUTPUT LIST

40

IV. A. TEXT AND NUMERICAL INPUT

The facility for typewritten input to a LEAP program is line-oriented

and format-free. Normally (see SETSMACKER procedure), a line which is

being typed in is not processed until a read-in key or carriage return key

is pushed. Five special function keys are allowed:

a) The DELETE key: deletes the previous character typed,
unless there is no previous character on this line.

b) the WORD EXAM key: delete the previous input word on this
line, and any trailing spaces or tabs.

c) the NO key: delete all previous characters on this line.

d) the YES key: types a clean version of the input line so far.

e) the READ-IN key: terminates the line, using it as a text file
name, and pushes the contents of that text file onto the source
of input characters.

An input line consists of a sequence of input words, separated by

spaces and/or tabs. The READ statement takes a list of variables as its

argument, and attempts to read one input word into each variable, working

from left to right, until the argument list is exhausted. If there are not

enough input words to satisfy the argument list, the system will wait for

sufficient input from completed input lines to be typed. As each input

word is read into a variable, allowed data-type conversions are made (see

Table A3). The data-type of the input word is determined from its format

(see the discussion of constants in Section I. A), and the data-type of the

variable is known from its declaration. Only variables of the following types

may be arguments to a READ statement:

REAL
INTEGER
BOOLEAN
FIXED
TEXTARRAY

If a TEXT ARRAY variable is the argument, an input word will be copied

character by character into the indicated textarray, starting with the first

element in the textarray. The value of each textarray element will be the

integer character code for the indicated character. The next available

41

element in the textarray will have the value 777g to indicate end-of-word.

The reserved INTEGER variable o-CHARCNT will contain the number of

characters read into the TEXTARRAY (not including the 777g character).

There are two general forms for the READ statement:

a) READ <list of variables separated by commas>;
(example: READ X, Y, I, IBA;)

b) READ {<TD: an integer expression^ <list of variables>;
(example: READ {37} X, Y, I, IBA;)

The second of the above forms is used to indicate an identifying integer

for the READ statement; in case of a read error, this integer is reported

to the user along with the appropriate read error code (see Table A4.).

The READ statement reads input words; there is another statement

for reading input characters:

a) READCHAR <list of INTEGER variables>;

b) READCHAR {ID} <list of INTEGER variables>;

This statement takes a list of INTEGER variables as its argument, and

attempts to read one input character into each variable, going from left

to right, until the argument list is exhausted. The indicated integer

character code is stored into each variable. Spaces, tabs, and carriage

returns ARE treated as input characters. If there are not enough input

characters to satisfy the argument list, the system will wait for sufficient

input from completed input lines to be typed.

The second READCHAR statement form is similar to the second

READ statement form; in case of a read error, the indicated ID is reported

to the user along with the appropriate read error code (see Table A4.).

The user may disable the built-in facilities for reporting a read

error by executing a statement of the following form:

SETRDERLBL <label>

This causes the system to note the indicated label, and transfer control

to it instead of printing an error message when the next read error occurs.

Appropriate information is stored into reserved variables when a read

42

error occurs (see Table Al.).

The user may cause his program to take its input from a text file

rather than from the keyboard. At execution time, he may type the name

of a text file, and then hit the READ-IN key. This causes the indicated

text to be read in exactly as if it were typed in. When the text file is

exhausted, a message will be printed out, and input will again be taken

from the keyboard. Note that no change need be made to the user program.

The user may re-read an input word or input character on the current
*

input line by storing away and later resetting the system's input pointer.

This pointer is kept in the reserved variable INPTR (see Table Al .).

TABLE Al. RESERVED VARIABLES AND PROCEDURES FOR
THE LEAP INPUT FACILITY

(1) READNUM (INTEGER)

The value of this variable is set to the ID of the offending

statement (if specified) when a read error occurs.

(2) RDERRCODE (INTEGER)

The value of this variable is set to the read error code

number (see Table A4.) when a read error occurs.

(3) RDTATYPE (INTEGER)

The value of this variable is set to the data type code

of the input word if an illegal mode conversion is requested.

(4) ENDOFLINE (BOOLEAN)

This variable is set to FALSE at the beginning of each

READ and READCHAR statement execution, and set to TRUE at

the end of the execution if there is no more input on the current line.

(5) INPTR (INTEGER)

The value of this variable is a pointer to the next character

on the current input line.

(6) LASTINPTR (INTEGER)

This is an integer reserved variable which is used to

store the previous value of INPTR. Each time an input character

or input word is to be read from the current input line, the value

Note that INPTR may not be reset to point into a previous input line

43

of INPTR is assigned to LASTINPTR. If a new input line must be

fetched, LASTINPTR is reset to the beginning of the new line.

The system uses the value of INPTR as its pointer into the current

input line; the user may save LASTINPTR or INPTR, and reset INPTR

if desired. Note that INPTR may not be reset to point into a previous

input line.

(7) ISCHARINPUT (BOOLEAN PROCEDURE; no parameters)

This returns the value TRUE if there are any characters left

on the current input line, or if there is another completed input

line available; the value FALSE is returned otherwise.

(8) ISWORDINPUT (BOOLEAN PROCEDURE; no parameters)

This returns the value TRUE if there are any input words left

on the current input line, or if there are input words on any new,

completed input line; the value FALSE is returned otherwise.

(9) CLEARKBDLINE (PROCEDURE; no parameters)

This removes all input from the current input line.

(10) CLEARKBD (PROCEDURE; no parameters)

This removes all completed input lines from the source of typed

input.

(11) READINTEXTFILE (PROCEDURE; Textarray parameter)

This procedure pushes the textfile whose file name is given onto the

stack of input character sources. If the parameter is not a correct textfile name,

a READ ERROR #12 will result.

Example: READINTEXTFILE { ' STANDARDTEXT' };

(12) SETSMACKER (PROCEDURE; boolean parameter)

This procedure allows the user to access single characters

typed on the keyboard before a carriage return is typed. Only the func-

tions READCHAR and ISCHARINPUT are changed. After a call of the

form SETSMACKER {FALSE }, READCHAR will return any character typed,

44

including the five function keys which, obviously, have no effect

when accessed in such a manner. This is a special mode of operation,

primarily for those who wish to use the keyboard as a set of control

keys, rather than as a source of input text lines or words. Under

this mode, READ acts as it always does, but INPTR, LINPTR, and

ISWORDINPUT should not be used.

The normal mode for the read package is restored by executing a

SETSM ACKER {TRUE};

statement.

45

DATA TYPE

BOOLEAN

INTEGER

FIXED (FRACTION)

REAL

ALPHANUMERIC

CODE

1

2

3

4

5

TABLE A2 . DATA TYPE CODES

,if fractional part
^ 0 =*> error

if s 1 = > error

0 => FALSE

*> TRUE

any other =>
ERROR

TABLE A3. ALLOWED DATA TYPE CONVERSIONS FOR
THE READ STATEMENT

46

TABLE A4. READ ERROR CODES

CODE (in OCTAL) ERROR

1 illegal mode conversion - example:

you tried to read an INTEGER into
a FIXED (fraction) variable.

2 too many characters on this line

3 used ISWORDINPUT while SMACKER
was off

4 you tried to do a READCHAR into a
variable of different type then INTEGER

12 tried to read-in a nonexistent text file

47

B. TEXT AND NUMERICAL OUTPUT

1. Statements which output a text array:

a) PRINT <text array>;

b) XEROX <text array>;

This statement causes the indicated text to be appended

to the XEROX buffer. This buffer is maintained by the APEX

executive. The following statement causes the XEROX buffer

to be printed and then cleared:

DUMP XEROX;

c) SHOWTEXT [<text array>, <display item ID>, <display group ID>,
<X position>, <Y position>];

This is a reserved procedure which causes the indicated

text to be added as a display item to the current display structure.

The indicated position coordinates specify the position of the lower

left comer of the first character.

d) STORETEXT [<text array> , <X position> , <Y position>];

This is a reserved procedure which causes the indicated

text to be displayed on the storaqe tube at the indicated DOSition.

2. FORMAT Statements

The FORMAT statement is used to define a format descriptor, and

associate it with a format description. A format description is used to

specify the manner in which printed output is to be formatted. For example,

a format description may indicate the number of digits to be printed after

the decimal point of a real number, or the number of spaces between fields

on an output line, or whether to print or suppress leading zeros.

The FORMAT statement has the following general form:

FORMAT <name of format descriptor> (<format description>);

A FORMAT statement should appear as a declaration in a declaration portion

of a LEAP program.

In general, a format description consists of several data descriptors

which are separated by vertical bar or slash. In addition to separating

data descriptors, a slash causes a carriage return to be inserted on the

48

output line when the format description is applied to data to be output.

Data descriptors in a format specification are matched to data

arguments on a one-to-one basis. A full discussion of the format scan

and list matching follows this section.

In general, a data descriptor consists of a combination of desig-

nators to specify the different portions of the data argument which is

to be printed. Nesting of data descriptors is accomplished by parentheses

preceded by an optional replicator (see the examples). The general form

for a number specification is:

[SIGN] [WHOLE DESIGNATOR] [POINT] [FRACTIONAL

DESIGNATOR] [CONVERSION] [MODIFIER].

Some of these fields are optional (see the examples).

Numbers are converted to characters according to the conversion

designator. These are:

K for octal integer.

I for decimal integer,

F for fraction,

E for mixed plus exponent of 10,

R for mixed number, and

A for alphanumeric

The modifier is an integer constant specifying the power of ten

(or eight for octal integers) which multiplies the number before it is

placed for output. For example, T 2, would cause the integer to be mul-
2

tiplied by 100 (10) before processing.

The sign of a number is specified by an optional portion of the

specification. The sign may have either a fixed or floating position.

A fixed sign is declared by having only a single + or - sign. A floating

sign is declared by preceding the sign with a replicator larger than 1.

This defines the sign field. The + causes the sign to be printed regardless

of its value; the - causes only negative signs to be printed.

A fixed sign is printed in the specified position at the left of the

field. A floating sign is printed either at the left of the first significant

49

digit or at the right of the sign field.

A decimal point is indicated by a comma.

Both the whole and fractional parts of a number are used to

describe the digit positions before and after the decimal point. The

two digit designators are:

D Print digits, but suppress leading or trailing zeros

Z Print digits with leading or trailing zeros.

These designators must be ordered if both are used to describe

either whole or fractional parts. For the whole part of a number, (D)

must precede (Z), and for the fractional part, (Z) must precede (D).

There are two special output descriptors which may be used in a

format description:

(a) S (insert a space character)

(b) T (insert a tab character)

Examples of the FORMAT statement follow:

(a) FORMAT Fl (6 D I);

Specifies a six digit decimal integer with leading zeros supressed,
If a sign is not specified, + is assumed.

(b) FORMAT F2 (- 7 D, 3 Z R);

Specifies a real number having seven integer digits, and
three fractional digits, with trailing zeros. A sign will
be printed only if the number is negative.

(c) FORMAT F3 (7 A);

Specifies seven integer numbers, which will be treated as
character codes, and printed as the indicated characters.

(d) FORMAT F4 (3 (4DII-5D, 6DE) I 2 A);

Specifies three pairs of numbers (the first of each pair
an integer, the second a real) followed by two character codes.

3 . Statements for Formatted Output

There are three statements which generate formatted output:

(a) PRINT FORMAT <format descriptor , <output list>;

This causes the indicated output to be printed on the Lincoln

50

writer (see the discussion of the output list below).

(b) XEROX FORMAT <format descriptor , < output list>;

This causes the indicated output characters to be put into
the APEX Xerox buffer. The user program must force this
buffer to be dumped by executing a

DUMP XEROX;

statement.

(c) GATHER FORMAT <format descriptor ,< output list>;

This causes the indicated output characters to be appended
to a special reserved textarray named OUTPUT. This
textarray may be used as a parameter to the statements
described in section B of this appendix, for example. The
following special statement clears and reinitializes the
OUTPUT reserved textarray:

CLEAROUTPUT;

There are several restrictions on the use of this textarray:
(i) Storage for the elements of OUTPUT is auto-

matically allocated, and is of a fixed length
(500 characters). Do not attempt to re-declare or
assign storage to OUTPUT.

(ii) References may be made to the elements of OUTPUT,
but do not attempt to move the 777. character if
subsequent GATHER statements are to be executed
before a CLEAROUTPUT is done.

4 . The Output List

The output argument list in a formatted output statement consists

of arithmetic expressions and braced FOR statements. The comma is used to

separate list elements.

The braced (f }) FOR statement is an iterative output argument.

This means that several elements of the argument list may be indicated by

one FOR statement. The braced FOR statement has the same form as the

regular FOR except that the DO clause is an arithmetic expression or another

braced FOR statement.

Examples: IFOR 1 -I STEP 1 THRU 10 DO A^

would be equivalent to listing arguments Ai . . . Aio-

{FOR 1 - I STEP 1 UNTIL I> 10 DO
fFOR 1 -J STEP 1 UNTIL J> 10 DO AIf j, Bj(^ 1

would be equivalent to listing elements A\ (\ , Bi i, A^ 2 • ^2 ,1. .

51

A10,10' Bio,io-
[FOR 1 -1 STEP 1 UNTIL I > J DO
{FOR 1 -KSTEP 1 UNTIL K> 3 DOAI)KD

would cause the variables A]_ \ , A\ 2 ' ^1, 3 ' ^2 1 > etc • to]°e used •

The processing for formatted output is controlled by the output

list. The format description is scanned and processed until a data de-

scriptor is found. The next output argument is then fetched and processed;

the format scan is continued until there are no more arguments. If the

end of the format description is reached before the output list is

exhausted, a carriage return is automatically inserted, and the scan

restarts from the beginning.

Examples:

FORMAT F (5 D I)

PRINT FORMAT F, A, B, C;

causes A, B and C to be printed as 5-digit integers on separate lines.

FORMAT F (5(5 D I);

XEROX FORMAT F, X, Y;

cause X and Y to be placed in Xerox buffer as 5-digit integers on one line.

FORMAT F (2(5D, 3D E))

PRINT FORMAT F, fFOR 1 - I STEP 1 UNTIL I > 6 DO

{FOR 1 - J STEP 1 UNTIL J > 2 DO A^ } } ;

causes array elements A . , A^ ?, A? , A_?, . . . At.? to be printed as

real numbers, two to a line.

52

APPENDIX V
*

SUBPROGRAM LINKAGE FACILITY

A. GOUPTO AND PEELBACK

There is a facility for going up to a LEAP program from a LEAP pro-

gram with input parameters and output parameters . The calling program

executes a statement of the form:

GOUPTO <TEXTARRAY expression> <argument list>;

where the TEXTARRAY contains the name of the LEAP program to be called,

and the argument list may be:

a. null, if there are no parameters.

b. {<INPUT parameter list>} , if there are only input parameters.

c [; <OUTPUT parameter list>|, if there are only output para-
meters, and

d. [<INPUT parameter list>; <OUTPUT parameter list>], if there
are both.

Input parameters may be variables or expressions; output parameters must be

variables .

In the called program, if there are any input parameters, a declaration

of the form

INPUT tdeclaration list> 1;

must appear immediately after USELEAP, or after START if there is no

USELEAP. The declaration list is similar to the declaration list for a

PROCEDURE declaration, with the exceptions that LABEL and PROCEDURE

parameters are not allowed, and a program may use the "FILE" declaration

to pass the name of a file (or any name) in the public or private directory

as a parameter in the GOUPTO statement. A "directory item" parameter is

put into the connector, and the INPUT declaration on the upper map causes

the text of the file name to be made available. The "FILE" declaration is

used on both maps as follows:

Examples:

lower map: GOUPTO 'BLOP' (FILE 'SAM', . . . };

For an introduction to the APEX time-sharing executive and features of the
time-shared virtual machine, see references 6 and 11.

53

upper map

(in the program BLOP):

START

INPUT [FILE X, . . . 1;

After the INPUT declaration on the upper map x behaves like a

declared TEXTARRAY variable, having the FILE NAME as its

value.

When the called program finishes, it may execute a PEELBACK

statement:

PEELBACK [output parameter list};

or simply execute the FINISH statement.

B. OVERLAYS

A LEAP program may be segmented into one main program and

several subprograms (called OVERLAYS). At execution time , the main

program is set up on the user's map, and remains set up until execution

terminates. Overlays may be set up and dropped from the map under

program control. Only one overlay at a time may be set up. The main

program must be no larger than one book of code, and each overlay is
7

similarly restricted. At compile time, the user must use the BBIN com-

mand to compile his program if overlays are declared within.

The overlay facility was implemented for three reasons;

(1) to help reduce the maximum core requirement both at

compile-time and at run-time,

(2) to provide an alternative to the GOUPTO facility, which

may cause large inefficiencies if much information is passed

between maps, and
7

(3) to get around the requirement (imposed by the VITAL

system) that the total code compiled for any one program not

exceed two books.

Overlay declarations should appear immediately before FINISH

in a LEAP program. Overlay declarations may not be nested. A LEAP

54

program in which overlays are declared should have the following general form:

START

< entire main program >

DEFINE OVERLAY '<character string >';
< statement >;

DEFINE OVERLAY '<character string >' ;
< statement >;

FINISH

Example:

START

REAL X, Y;

3.0 _X;

DEFINE OVERLAY 'OVL1';

BEGIN

END

FINISH

There are three statements in LEAP which are related to the over-

lay feature:

(1) CALL < textarray expression >;

This statement causes the overlay with the indicated

name to be set up, and control to be transferred to the first state-

ment in the overlay. If a different overlay is already set up when

this statement is executed, it will be dropped from the map.

(2) OVERLAYRETURN;

This statement causes control to return from an overlay

to the statement following the CALL statement last executed.

Note that one overlay may call another overlay; the calling

55

overlay is re-set up before control is returned.

A GOTO statement which transfers control to a label in the main

program may be executed from within an overlay (if the label is not within

a block). Note that labels declared within an overlay may not be referenced

from outside the overlay.

(3) DROPOVERLAY;

This statement causes the current overlay (if any) to be

dropped from the current map.

56

APPENDIX VI

ERROR DETECTION IN LEAP

A. PRODUCTION ERRORS
*

These errors appear in the syntax phase of compiling. They are

noted by the following comment:

PERRXXXX EDITARG

 (line in error)

where, XXXX is the error number, EDITARG is a standard argument defining

the line in error, and asterisks mark the current scan pointer at the occur-

rance of the error.

HINT: If the error occurs on the first word of the line, then the error may
be caused by an incorrect end to the preceeding line.

B. SEMANTIC ERRORS

These errors are caused by the VITAL mechanisms and may in-

dicate an error in the compiler. They are noted by the comment:

SERR XXXX EDITARG

 (line in error)

where XXXX and EDITARG are as previously defined. If these errors occur,

the user should consult the staff.

C. SEMANTIC FAULTS

These faults occur in the semantics of the language and are noted

by the comment:

FAULT XXXX EDITARG

 (line in error)

where XXXX and EDITARG are as defined for production errors.

A complete tabulation of both compile-time and run-time errors

and probable causes is presented below.

*The LEAP compiler was written using the VITAL compiler-compiler, and is

housed in the VITAL system. For information about VITAL, see reference 7

57

or
o
o

Q-

CO
Q

O
Z Ul

co

col

u|
ru

d
ZJ
o
Ml

•—> O- to <~> 0

o 3 0 to »-« r—
UJ z: 1— X t-

CO >-
_1

O
z X z

z
Ul

ut

z
Ul z Ul »— 1- ul z. t— —•
X o a. o z 0 z: Z5 z u. ««
V-

z t—
o Ul

z:
CO Ul

I—
0
QL

ul
z;

Ul
0

>-
1-

1— o z ul 1 -t 'I Ul •—
<C

H- i--

Ul
X

1—
Ql to u.

1— Ul -1

<n -X *t ^ t— O 0 i— 0 0
u| or a tO t- z to a 0

M -i or -=t 0 li: Ul Ul

M _i z UJ M -1 »—1 Ul XI 0

CKI o o i— Ol z? 1— CD t-A 0 >"
UJ Ul »—. Ul OJ z: «t Zl a or z:
ru O f- Z- Zl 3 UL -3 O-

04 <J ^t •-1 t-> Ul z (Kl <t
ul
or
ZZ>

z

U.

or
z

1—
0
z

a
u_

or
0

Q a O z 0 Ul 0

_^ Z ul «t 1 z »—• <c C£ X t-

X -tt VJ •—• z to to z; tO <J~> to 3C V- Ul •2
<t o or tO o l— Ul ul <L Ul Ul ul u_ 0 *t

or z: .^ toi or o -I >- »-« a. n_ 0_ z Q_ o_ O- 0 Ul u. •— 1-
rj X -1 Q- U- _l I— •—• >- >- >- >- >- >- X 0 to tO

o_ ^ <£
£

^H

^ «* Q

_1
UJ

z
o

-I en
0

¥- t— Q »— V- t— Ul
0

I—

UJ 0

z
0

U UJ co <t to Ul Ul Ul ul Ul Ul •—' X 0 0 -->
Ul Q o -4 z zx. < C£ -I CO _1 -I X _l _1 _l to t- •—
to UJ fM »—• o _l z> o ZL> CO CO 1— CO CO CO \— *—• to 0 -t

QT — Q 01 _l tj Ul tO •— •—• *<* •— •—i Ul t- Ul Ul =3 ^ t- Ul

1 <t Z t— _l or o Q X I— 1— z X t— l~ t— _l z _l -J 0 \z> to Ul

_l a <c •— -X o o •—• Ul <t <t •—• •—• <c <t <t CO Ul CO co Q 0 ZD CO

3 CJ UJ IX Ol o; z a. a. OL o_ ru a. •a. z: <c <t 0 Ul z
o Ul or to to Ul z Ul •— 0 z: z; to \- z: z: z: •—• 0 •-• »-• Ul -I -X Ul 0 1—

_l o 'i a a z ul or <I »— <t 0 •^> •-• <t 0 0 0 QL 0 (£ oc to _1 <u CO *-• u| UJ tO

u. _i UJ or Q- o o Ul i: >- 0 0 Zl 0 0 0 -t Qi «1 <c 0 «1 ^Jl to =•(^H zz>
IK CO o M to zz> >- Q 2: _i z z z z z z > -et. >• =• 0 C(1— to «a «a z;
UJ UJ Ul •H O »— t— Ul z <c <c z •— •— 0 -I •— •—• »-• Ul -» 0 Ul tni tOl —
;> —. Q UJ VJ o 0; 0 •—• Ul Ul z z CO to z 0;
o t— UJ t— Ul OT *t o •— <t t— Ul ul to I— Ul Ul ul <-> CX 0 0 *-« Ul <t z >- a. cc or X

or o to z it z CO 1— QT t— a. 0 Ul :> 3- to 0 > ;> ^> z 'J3 •—• >—t I— _l <l I— X 0 0 Ul

UJ Ul z _1 o <c <c u. «* a. <c z > ^t <t Ul z <c <t <c Ul O t— 1— 0 Ul CO ul 0 QC Ul u- u. a
_l a. <t •—• _1 •- \- o a a; _i -1 X X a: X X X a: Ul <c <t z Q; «I to ul z
CO o to o t— tJ to to <c <t Ul ul X O- to Ul O cc cc z =) —1 ZD U| a. S3 V- 1— •-•
<t a: to o «t UJ z 13 Ul Ul _i CO t— to to X •—' tO to to u. O Ul ul <t Q QL oa 0 U| z z
I— a_ —• -1 a: o o z: to _1 to tj <t to z z Ul z z z ul Qi 1- l~ 0 Ul -I I— 0(OL H ul Ul ai

z: <t tj o a. to Ul _l CK >- 0 0 ac 0 0 0 or a. »-« •—• CJ > 0 H a. -1 z; z: z;
OT >- >- _i •>- - 1 2: «t Q Ul <c K-. •—• Ul Ul — •—• •—• SI 0 z 3 0 ZD
UJ z 14 z o -1 _l Zl -I a. _1 *— OIL to tO z V— to to tO -1 _J _l _J Q: _l z _) -I 0 0 _i

_1 <. <H <t UJ z -a ori <!. to UJ «t Ul OIL to to 0 Ul tO to to <c <c <t <t Zl a. <t •>i oa <t <c oc or «t
Z: 3 a; o o o 3 o t— A 0 i: <t Ul Ul z; Ul Ul UJ 0 0 0 0 M 0 0 uJ 0 0 <t -<t 0

o_ UJ Ul >- UJ <c t— ct Q; >- <t Oi OL on Ul Ul Ul Ul M tO ul Ul Ul Ul

X o U4 o O z _) U| -1 _i z UJ -1 oc X a. a. _1 ct O- a. o_ _1 _J _l _1 Zl —• -I 0 ^ _l _l Q 0 -I

o o ca o <t <t -I arl _l z <t _1 <t Ul X X z <c X X X _l _1 _1 _l ^ X _l 0 -51 -1 _1 <t •a _|
o V- oi H- CD tJ ~ - 1 —1 o t-> <t •— 0- I— UJ Ul 0 a_ Ul Ul ul —• " — •— tJI »— —• >- tOI —• —• CD CO «—<

*^

•o n n ^ *» •^00-^0000

58

co
UJ
CK
n-
X
UJ

23
UJ

n 10

<s -I
>3I o

3 3 o< o __
o o -I 3 CO UJ
LK CK -i -1
«i -I 3

3
3
3 Q _ CO

-1
u. u_ «i *£ UJ » - .—.
o o

UJ CO CO
CO

3

UJ
>- 'lK

IK IK 3 _l <c •X i-
UJ UJ CD X X CO CO UJ
CO co CKI od <t *— "-• CK IK

£ 3E 3 UJ •—. h- l- X Id VI 3
3 _5 CJ, IK — — X •- O >- <^1

Z z M UJ

5» a: (K

o
UJ Q

UJ
t - 3

UJ
>3

O o o O X 3 z z IK O

Z z H 2 M »t '_il Q 3 •-- UJ CK
o o o CO CO Z -« 3 o :> n_

CK CK <t «— z IK -1 3 UJ <£ -fl -I CO z o
IE :E

i— z
CO
CO

<t O
Z LK >31

-1

OJ

X C3t <3
O >- -t

UJ
-i

UJ UJ o UJ UJ u. UJ 0(O -J t- • J 3 a UJ CO z
X X z 21 CK o l- e> 3, 3 IKI » X <c CO 3 1—•

t- 1— UJ Q- z * UJ M z <t <I 'X UJ X
CO CO s— X V— <t t— V- t- UJ UJ *t. il CK t~ O V— >- 2 CO X X •—1 -t UJ CK •— Z z z UJ UJ <t <-> t- t— 3 CO f- —•

•- o z t— >— 1— <t CO t- ~X «t •—' OL CK — CJ O o «t 3 3:
t—. •—• o »— .—i t— CO z a. z z (XL cn I— >— U. u. u. IM z z i: o
_1 to •—< 3: :£ z «x o <i '3 o CO CO UJ UJ o CO ~- CO i:

»i CO CO UJ <t _i CJ t— t— i— z z OL or CQ 3 O o 3 CO CO •-. CO o
3 UJ CO Q a 2: CO *t CO <£ <t o o O o CD z z t— «£ Q •— •—1 CK (K
o IK UJ UJ UJ UJ CO <t Z «* z <J CJ •3 >3 \— t~ t" «4 in >3 UJ UJ r3 «i o U_

UJ a. IK 3 3 I— «I o o *—• *— O- a. CO t—• CO CO <c O OL UJ UJ 3 UJ X o
X a. _) _J <t uj •—• u: CJ -i -1 -=l <t »—t •—• 3 CK <t <t O- 3 -i CK 3 3 CO z 3 t- >-

1^ UJ X ^1 -I >— Zl IKI >- UJ <\- O- o; (K i: -i X X 3 UJ CO fO *l a Q C3 <t

7£. UJ 3 o CO o< 31 3 X 'I UJ UJ V- 1— <3 CJ — S- UJ UJ CJ I— 1 <c *—• u. -X «t <t. cO 3
in l-t a <i t— IK a; O o CO CO UJ UJ CD IK UJ UJ •— CO —• CK UJ UJ UJ UJ •--• IK

<t Si Wl CO CO H XX U4 or t—• t— z z UJ UJ or UJ J 3 <c a za tK *— IK <t r~> CK (K CK UJ ^ •— •—• Zl M 31 u_ UJ o «i -i a a UJ UJ 13 OJ Q_ H <t 1 X •^ > z "JL UJ :>
2 Z i-1 H Zl c* z z CO CO 3 t— Z "i •-• uj CO CO en aa > *— =» 3 O a O -t z: o
•— •— Z UJ UJ LKI CKJ 31 oa UJ u_ u_ •—« —1 H H CO UJ UJ cw OL co; m 3 <t <« z t— i— t— CK -t
<I -1 •—1 CK or <u uj uj. a-l X CO CO o o <a -a «I ^rl o: H \— UJ -1 n_ x z •ZL z o Z O z z
X X <t 3 3 O-l t— •-« —1 *— 1— za i3 •— -i UJ «i *— •3 ij o — o — «* t— h- !•- O -1

o 3 X Q O o ot «t <t UJ UJ z z ccl u:l u: o; u_ CO CO UJ O M UJ •— -3. ^i *— z z z at >-
3 UJ UJ I— IKI UJ a: OL CO CO UJ UJ -3) ^ -I <t UJ •— — UJ i: 3 UJ M 1— 3 f- <c o UJ UJ UJ a. <t 3

i— V— 3 3 o-l UJ UJ v; o O 3 3 z z UJ UJ > Q. Q: X X > <t ca ~\ -I o *l CK f- i: i; 1c 3 3 - • t— o o »— CO CO «i t— »— o o I— t— <l CK >- Q: UJ IK UJ 3 3 3 z CK <*
Z z 2 CK IK z _l 3 3 V— <t -i 3 3 a. o_ 3 3 3 3 3 X <t z 3 3 UJ ct UJ V- i: O o o UJ O

i <t <t a. O- UJ <t <J o <c «i X X <t <t «I <I <t CK PC 0. <I «1 <i i— »- t—> >- LK IK (K -i >•
3 3 3 2. o 1— t- 1— —• •—« o o UJ UJ O O O O O UJ UJ t— =•: O O •—• t— •—• z «t <t -t 21 o •-

CO co 3 UJ - - • _i 3 UJ UJ UJ UJ UJ UJ UJ X X - X UJ UJ • CO o -
3 3 3 •—• ~- O _1 z Z z Q_ a_ 3 3 UJ UJ 3 3 3 3 3 I— ^— z t- o 3 3 UJ Z UJ •— z a Q Q UJ o Z
o o O X X CK _l <x <t <t UJ UJ 3 3 X X 3 3 3 3 3 •—• »-» «I o o 3 3 X <t X X >- -i 1 1 X <l -4 >- >- >- 1— t— -I ~ 3 3 c-i CK oc •— •— i— t— "— — •— —* —• UJ UJ cj co i— —I —• »- CJ l- ^- CO CO CD CD 1— CO 3

o — —

59

UJ

1
Q

Q
UJ
CO

-i

ix

to

UJ

3
CO UJ

o 1—
. o
• 3 • rj

UJ

z -1
•—i

i— V-

r> O
© o
a- ir

o

a:
a:

co
en
o

CO CO
4

Z CO
—• o

Of
CK Q-
O
en 3
Qi O

en
en

CO
IX
o
en
a:

_l o Z
o a_ z o
Z SL •"• ~
_, _. Q.|-

z <n z <c
z - LJ a:
—• <c
O Z Z -I z
UJ O O O O
CD —• —• UJ •—

I— »- o »—
ac <t <t <<
4 en m x ac
en 4 <x •— -i
O J J K -I
O CJ U t— VJ
u: u u < uj
0_ Q Q 3E Q

x
UJ

z
en

z
o

UJ
in

1-3
UJ
>_>
O
en
II-

4

4

o o o

4 4
(K en
4 4
_l _l
<J CJ
UJ UJ
Q O

4
(K
-I
..J
CJ
Ul
ro

UJ
CO

I— t— OL •>-
Qi C£ 4 4
< < i- a
»— *— co m

z z z z to CO 4
o o o o z
___-,»_,_oz

444 < ul ui to
a: a: a: a: 2: £ co
4 4 4 -4. UJ UJ UJ
 I I I _i t- t- a:
V_> U CJ VJ 4 -4 Q_
U U Ul Ul 1- I- X
a Q CO Q CO CO UJ

o o o

CO CO
3 3 3 3

z z a »x
o o CJ CJ
—• •—• _J

CO z CO _l _/ UJ
CO o CO -i «i DC
UJ z —• Ul z CJ 3

ot o CO u; o a
Q- »— CO rc. •— Ul Ul

X CO ul X Ul m • - Of c_>
Ul CO en UJ _) VJ •— o o

X. UJ (i_ CO »- fO r-3 m
*3 •—• <n Ul X >a -i .—• Z ul a.
UJ in ex. _l UJ U| —• :c o o t—

H 1— X CO • -{ in a> O o 't -t

-1 4 ul 4 :U ~t 4 IK >:
ZcL •— UJ > (i; Q: n_ fK en

z z en 3 z O O o o
4 4 -I 4 4 4 u. u. •i u. u.

>•

u. u. u. z u. u_ i- 1— U- »— t—
o o o 4 4 o o -1

^1
o -1

Ul Ul Ul 1- i- Ul Ul c* ex 1U r±: CK

CO CO CO o O CO CO o o CO o O

3 =) 3 z z 3 o u. u. 3 u. U.

_l_l_J_J_l_l_l_l_l_J_l_l_l_l_l_l_l_l_l_l_l_l_l_llOcO_l_J_J_l_l_J_l
-4'<<t<£«*<t«!«l'«t-<t«t«t«*'<l-4«t«*«t<X-l<*«t-<«*—'—i «Z «X <t 4 4 <I 4
OOOOUOOOOOOOOOOOOOOOOOOO OOOOOOO
I.I lit i.i UJ i»i lit !•! !•! i.i ill i.t I.I I.I 1.1 I.I i.i iii ill i.i I.I I.I I.I I.I I.I m tn I.I i.i I.I I.I I.I iii ill

_l I I —» • I I _l I • • I I I. I I I I I _» I • I 1^— —• _l _l _l _l _l _l _l
_J_I_I-J_I_1_1_1_J_I_J_I_I_I_J_I_I_J_I_I_I_I_1_JIX_J_I_J_I.-I_1_I

<M X
x •-•

Ul
CO

CJ

a
o
en
a.

60

a
u_l

o o
z o
—• a:
z o a

Q

UJ

z
_1

o

(t
o

-4 Ctl -4 -4
V- r_3 t- f-
to oj. to to

q J q q
N -i -s -s
-1 <t -i -i

_!• -J _l
<t CkU «1 <t
O OL\ O O
u H u u
_i tnt _i _i
_i >i _l _i
— t/» — ~

z
UJ
i;
UJ »-
"4
I—
to

o> >-
UJ _l
co ca

<t
z CO
o o
—I CC
to o_
tO
UJ O
Oi o
o. >-
X
UJ I

M v-
<a z
oa ui
oa s:
-4 UJ.

•- H •-
Z >« -I
ui u» i-
2: M to
UJ
•— ac <t
«t o
• - u_
to >i o

q u u
*s cm to
-i <9 O

*n «n »n m

Z X X £

Z Z Z Z

»n «•> t/> *n

2£ E Z X

<J <J <J
O 3 3
a: a: o:

u tj u o
13 3 3 3
a o: K K

tOtOtOtOtOtOtOtOt/)

<I «4 -4 -4
o o o o

o o o
u u y

o o o
UJ UJ UJ

o o o o
>-> O v-> v~>

•4 «4 *4 -4 -4 -4 -4 <C

OOOOOOOO

oooooooo

«4«t<t«j:«t<l«4«i
« Gf « ii: o; a: K it o:

z_i_i_i_j_i_i_i_ia:
UJOUUUVJOOOQ;

UJUIUIUJUJUJUJUJUJ
t— 00000000
z •-
UJ t- I— t— t— t— I— I— t-<t
2:«4«I-I«4«4-4«4-i2:
uixxzxxxxxct
•— 0£ QC Q£ It o: Q: [j; Q£ O
•40000000

ai

a:
UJ

h-
uj
z:
-i
a:
<c
ix

uJ

it
o

ad

Qfl CKI It] Od
ca a a a u.
aj ru aj ixi o

to

•4 -4 -4 -4
o o o o

•4 «I •< «t •< "4 "4
O O O O O O O
UJ UJ UJ UJ UJ UJ UJ

o
•4
co

o u. z _i _J i i to
u. UI •4 «t «t -4 3

*4 VJ VJ O <J _) Ol _l 1 _1
-4 <4 -4 oa oa oa oa <t
o
UJ

CQ O
J UJ a 83 y a o

UJ
_1 UI _l to) </i tq tq -I
-J U| _l >i >i >i >i _1

aj — »q tq tq tq —•

o
it
u_

UJ
to z —. o
it _i
-t o

o
to 1
it •"•

o i:
It UJ
It to
UJ

-t
.2
O o
•— z
•- •—•

o V-
z> 1—
a UJ
o o
(t on
a. o

m m >n w> m </>
•4

tO
3

uj
H
Ol

61

UJ
o

3
o

CO
UJ

z

-I o
at

o o X CO

-i u_ UJ ^- •—1
•—« > t—

»- UJ •— o Z >-
CK X c- t- UJ -i
< h- «* iil CK

»- >—• 3 UJ CK
cu 3

o
IK

X «i

-i

i- c>1 IK CO 1~ i- 3
3 r-3 UJ CO UJ CO -i

o ai (0 1 o o Z
X ii h- z -t X o
»- © 3 UJ z • -• UJ IK c^ f—•

— *— Z X UJ _J o o <c CO
i , CK

c—
UJ UJ

_l

<
<
IK CO

UJ

IK

z
UJ

I— 3 o o a t -- u. O O >z
z h- Of 1— «£ t— U- U- •—
UJ UJ CK H V- >- CO o a
ii UJ a t CJl cO CD UJ

UJ • UJ =>(U- v: :> UJ

»- CO Z CO IKI XI z o o •—. 3
-1 • -I CO H cj o> o >— UJ o
l- UJ •t 3: CO) 3 •— CO 3 < 3 z CO

CO CO C3 X a. O W a »- ^d C3 p—i 3 '-• C3

a CO. V— _1 UJ -a LKI CJ o <3 -i CO 3

a -1 . 3:
CO
1

LI-
CK tl aa z o

en
»I O

CO
^

-I CK CO

i to 11 UJ ij U- UJ CO O t— O

g 3 z t- >• rj UJ 1— o> -=t >- o «t z z <t z
o O 3 CK O UJ M z t- <£ z CK o z. 3 IK

^ _l .—• o UJ CK "i UJ u. -i •I Z CO O O

UJ 3 i— —• UJ <t 2; z o i: ^ 3 «t -I a 1— CQ IK
C3 o 3 Q u_ :s (K -1 UJ UJ UJ o CO X z CO 3 IK

u_ 3 UJ •—• UJ o 3 O UJ V— >• »— CK o O a U- 3 l- -t U. UJ

>3 CK ru t— O _i »- UJ IK -i »—• o U_ CO o O z o UJ o -I CK O

Z z t— >• z IK u_ CJ rj U_ H 1— o o V- I— fr - 3 3 (3 i. H- LJ

•-• o CO •— UJ <t CK 3 UJ CO z CO O l- CQ 3 C3 •~ CO

X —1 z o _l UJ IK >H < »t CO) UJ IX IK •—• o C3 en 3 < IK 3 3 3 o
o V— t—. UJ •—• > k— Z3 CD 2C i; 3 X UJ UJ >- O .—. 13 >: CO O IK Cl-
1- -I a or O o CO -4 a a -X -i j h- UJ t— t-- u_ •X IK -£• CO o CO

-1 IK "i Q *t _) o -< -1 z z --> Ol UJ CO CO o 3 Q_ <t O t~ IK IK UJ CK Z
s: «1 3 UJ <c 1— UJ UJ u_ <a *a CO u. •—« 1H CK UJ UJ UJ IK i: > 3 <t <C O 3 If. <t

3 Z co Z o cj o -» J 3 o UJ o ai --J 3 3 v- LU 3 s: 3 CQ CJ CK
>- o cc> — a; IK CO -t »r C-^l CJl UJ >- CK »— 3), O a_ 13 <J> 3 > —> •3 rn 3 -31 Q «1 c-
_i UJ U- o UJ — CK UJ UJ UJ UJ H UJ v~ -3 ^ t- — UJ UJ O O »—i UJ 3 <_l o •— \—
IK o X UJ CK V- o Q CO aa IK] H CO o_ t— Q Ol CK IK (K o x CK i: CO -t CK z IK

UJ >— a CK Z UJ t— Z 3 o i: cj UJ Q t— t— Q V- -i <C -t -I O
n_ «t •—» z UJ >—• CK CO o o O >• UJ O •—• z UJ UJ UJ a. UJ z 3 z z z > z
o ^ 3 3 a. _l V- »— z _l (K IK o —-* X > •> —• z t— >- O —• •—• UJ

CK o OJ . o •- UJ CO <c <i -3. CO K- V- IK cj -* -X (K •— a_ o UJ X i: CO

o_ z v: i— a CO CK 3 I— LJ O r^ O 2: o •—• CO CK H 3 X X CJ u. Z a CK CK IK 3 CK CK
3 m CK UJ 3 < CK UJ UJ UJ UJ CK O CO CO LJ UJ CO O O O f— CJ Id

*— :> o o -» Ul INI IK rj IK _1 •—• »—• o _1 H o 3 CK 3 3 3 CO a »- ~ UJ IK CK IK —• ^- >
o a: -i _J a. CD I- a. O _J CK CK o _I UJ •4 O CK O O O O 3 z t- X X CK CK CK II UJ Z
z o X CO

cOl
CKI
0(

UJ
CK

UJ
CO

>- 3

Z

UJ

-t CO 3 CJ •- 1— 1— ca CO >- UJ >- z >• 5- CO 3 <t t— i— UJ UJ UJ CO IO

-~ ~ CKI •3. -e- CO -. <-N* «-> n *o yj K Q ~« *v* *t 1 *o «** ^ -< <-^ •o w> « ^^ Q -< r* •n -V to w
<M >n 9 3

UJ

UJ
_l

a.

CK
O

z

UJ
X

-^ ^» 1 n M *» »0 »o »n u"> *i Irt »n

• n 14
3 <*
=x U4
ad -»

62

IV
o
t-
CJ
UJ
a: •—•
o
z

o
U

<v
o
•-

>3
LJ

—•

O. ri
iT> UJ •—•
•u. u.
o >—•
o CJ

CO

z ir> ^ —• o
t— w: o
-1 •u. a. o <a UJ

id > o 3 o id
cv z. o CQ i"i "«
o llJ ca i- u Z UJ

U- a. IJ Z »-i Zt_
„ o Q uo >— u. >- -X

a; IV z UJ 1—i IV z
o UJ UJ UJ •— UJ o_ C o 13

i- n. a_ r* U- CO 3 ILJ 1- 13 >- id
-t o o o •—' LiJ rv. CJ i- IV <I
IV IV z o id >- •- CO UJ UJ -t o *—
UJ n_ >- UJ ** _l UJ IV llJ 3 z »—
n. Q X a. Z z t/> z *-* o IV ^» -- CJ >-
o Z -X

UJ
l~ CO

UJ >- o
UJ

1— Q V UJ

CO I—
ca
UJ

U-
IV UJ

UJ

IV
CV
o (- -X IV i z o or > UJ or >- CQ IV 3 Z id -i t~ <t UJ o 3 t—

IV 3L f- _1 •— '3 UJ —• _) o <t 3 «c -I 3 CD O 3 1- — o o
id id O -I UJ CQ •— ~- •— i: >- o X Z UJ UJ u. •-* o u- UJ

UJ >- <L Z _J n_ Z i; <t U- CJ _1 1— UJ I- z 1— o u_ UJ 3 cv
• - -t O UJ —< 1/) ^ -X 3 o UJ UJ z UJ 3 ^ o IV «i «i t—•

v- CO cv — UJ z u. z X Z UJ -t cv IV _l >- o CO IV O CV cv UJ 1— --• o o
-t IV iv J o o i- »— z —. UJ »—. \— *c UJ o o ru s: X o u_ UJ

UJ •-L •— h- •— UJ iZ U_ ru CQ U- n_ ^ >- t— CO -t UJ o 3 z 3
z u. v- UJ u_ X X K- cO IV o IV o £ id <t rr> I— <c o co z V- 3 Q UJ «X

o u_ x rv 1— UJ >—i UJ o o ri _i d) i; IU £ -i o UJ UJ cv •— n_ "X UJ UJ t - O- o •—• 3 a. UJ >- t— —1 t— z >- h- ca UJ UJ < d: UJ L3 z IV 3 UJ «x •- --t o i"_ z o o UJ
a) CQ o ^~ t- X 3 —« C3 -i o z i; o ^ »— t— UJ IV o CO rM UJ ^: o UJ <t ~- z 3

iv UJ o u. <c LJ UJ IV —• <i: UJ o CO o 3 3 CO —. id z V - 3 z u. U
UJ r> v— v^ >- i t UJ h- UJ UJ CV _l UJ u_ -i _l o >~ z »-H «i •—• X CO X t n> o UJ CO 3 t-

r> tv UJ o t- t— _1 il r^i IV O CQ M UJ CQ co U_ ^- CO t~~ z cv UJ CO z •— V- o •—» — o
Z x CO O cv ~x cv »-* t—« _) •— a i— »— CO UJ UJ c3 o o UJ UJ •-^ K-. o o z U. z \— CO ic- o o u. 1 «x X CO X -£ o o UJ UJ •— UJ 3 id z Q- z 3 CO u. CO z z 3 UJ

UJ CO >- UJ UJ t— CO 1— z> z z -I _l 3 •— <L UJ id UJ •-• id —. 13 —* id o CO

IV Z h- —• t- r— Q »— CO in UJ o o o CQ CO 1U. CQ IJ- Z 3 ^-« 3 U- 3 CJ id CO cO CO -X z —•
O o -- IV z z -X X o o _l z IV z CO CO CO —• -1 o -t Z lO -i cs *-• — —' Z

IV IV iv z. -X UJ CO UJ _1 IV —• UJ i: UJ ^-» i-^ •—• CO 1— o t— 1 I 1 1 1 1 o_ Z UJ UJ CO UJ

rv CV _•£ UJ UJ 1— t— CJ IV u_ _J i—• -J cO o CO 3 1 1 1 1 1 1 rv CO i^ UJ UJ UJ 3 — id

UJ -i u_ 1— CO IV UJ UJ LiJ UJ O CJ O -i 1 «I id i; id •— -t
3 1*4 u_ '3 •-• —• UJ <t IV I 1 i 1 ^1 Id ~z n_ UJ UJ UJ UJ UJ UJ UJ LU UJ id ^ 1 z •X -t -I U_ UJ z

IV CO 3 3 t- a l/> V o s: 1 1 i I <t <C .-c id X X X 3 3 3 3 3 3 o Z z z IV UJ

© UJ cD iv ca UJ z z z UJ z Z z .—. UJ y~ UJ O 3 U_ UJ UJ UJ UJ t UJ 3
cv CJ Z 3 rv o •—1 UJ 1- ^- UJ UJ UJ UJ U_ U_ U. U- U_ U_ -1 UJ o 3 3 3 3 1 X f-i

CV •— *— V- 3 UJ o o o a_ o Ul _J _) _l _l 1 1 1 1 1 i 1 UJ UJ UJ UJ UJ UJ CO CO CO — •—• — — *- u.
UJ cv

i—
CO UJ

CO

tv
UJ

>- z o_ o a_ >-
CO u_ u_ u_ u.

1 ' 1 1 1 i 1 id id
-I -i

id
<C 1 1

3
1—

u_ U, U- u_ o
o 1 ,

X -i CO v- id Q UJ o o IX. a. o_ a. UJ UJ UJ UJ UJ UJ UJ z z z z z z 1 1 <t 1 t 1 1 o 1 1 —• id »—i o UJ ~i UJ CO id t— h- i: ^ ZiL 21 z _1 _J _l -1 _l _1 3 o Q Q Q C5 Q t— 1 1 1 1 UJ
in t- 1— iv —« -X -=t o UJ UJ UJ UJ —• — •— —-1 •—1 •— •— z Z Z Z Z z z z CO IV U-« u_
t- Z x —i --c rv X z o o O- fr— 1— *— H U- u_ U- u. u. u_ u_ -I <t <l -i -a -t — —. l- u_ u_ u_ U- z h- V—

-t —• •— Q IV a_ »- z z n_ a_ ru ru 0. a. n_ 0_ 0- n. a. n. ru o_ n. CL Q. cO CO IV 1 - 1— »~ \— o UJ UJ
id o iv UJ ".£ £ UJ —* •w; Z) o J o "3 o Ci o d> '3 3 3 3 3 3 3 3 t •- o o a o o •—' CO CO

CO —» t- •—• Q 3 UJ -I >- >~ CO >— h- y— 1— t~ h- \- V— •— t~ I— i~ k- »— •— »— »— <t «I o_ -X «x <x <c CO o o
3 o -I iv o -1 o •- ** IV IV -s UJ UJ UJ UJ LU UJ UJ UJ UJ IJJ UJ UJ UJ UJ UJ UJ UJ X X UJ UJ UJ CO UJ Ul 3 3

CO «i id h- z CQ >- «-• u. t— t- ~U- CO CO CO CO CO CO CO CO CO cO cO cO CO CO cO CO CO _£ a; cv IV IV IV cv <t CJ CJ

63

CK
UJ

Z

Q.
>-

X —•
UJ y— u_
-1 o

cO •—• 2 CJ
UJ U- UJ >—
o _l CO _J

2 >- UJ C3
-t _l LU o J
X UJ 2 > »£ a_
o

*t
o

t—
a.

CK >- 2 1 <t o UJ

z o V ^-
«t >- o UJ _l

UJ UJ IK <t z IT -X

-1 t- _1 o 1-U «x •—• cO •— I— CK IK X z.
u_ 2 u_

UJ u_
o h- •3-

cj
<t z *i -I CK o o UJ

LU o >—• LK CK CK
u_ o_ Z -1 U- o X UJ o UJ

o o 1U o »— M s; CO
ii- O _1 o Q 3

UJ LU o UJ UJ -i z UJ u. u_
i: _l *— £ o UJ z o o Q
•X •—• u cj •*i UJ _l UJ

z U_ -1 UJ z _J u_ UJ UJ o
—i y~ IK UJ _l _l UJ

t— © U- o »- 1— UJ Q •—' •—1 _) •
rz> 2 CK o o h- z u_ u_ »— CK
z o o_ 2 z _l 3 > >

1/) 2 «I o o •—1 o
co •— CO CO CO CO z 2 CK •
*—

UJ
CO *~* •""' •""' 1

o *•*•
t— t—

a. 0-

UJ IK UJ UJ UJ z UJ <t «t >- _l
^i LLJ UJ _1 1C ^ 2 z^ UJ UJ _) _)
-i X Q£ —• -I «I <I -I CK IK z <c
z »- UJ U- 2 2 o 2 CJ cj o o
UJ X

_1 t •- 1 1 t 1 I 1 1 t 1 *— I 1 1 1 1 1 1 1 1 CO

u_ 1 CK
U_ 1 u_ U- u_ u_ u_ u_ u_ u_ UJ

1 »- o o o o o o o o co
1 2 U- CO CO CO CO CO CO CO CO z •—• t— 3 3 3 3 3 3 => r> 3

u_ IK Z V- I— \- y— I— •- ^- 1- z
*— -t — *t -X «i 'I -I <£ <c <c
UJ X «i 1— y- h- V- V- y- ^- >— CK
CO O V- CO CO CO CO cO CO CO CO UJ

o t— V- t— »— t— y- •- »- 1— y— X
_l o 3 UJ UJ UJ UJ UJ UJ UJ UJ »—

CJ ru cu CO CO CO CO CO CO CO CO o

(K
UJ

-. *M "^

1— ru n.
z 2: s:
UJ UJ UJ
V t— i—
UJ t— t—

1— <t -3.
-i
l- z y-

cO o ZD *— o_
CK CO y~
UJ CK o
X UJ o
t— t>

•<; Z z
o> o

CJ
o

z ^
o UJ o

o_ -I ^ >- LI-

o y— CK
_1 UJ

u. i >•

CK y- o
UJ -3.

:> a _)
o <c

_i o
CK -« »-•
UJ o CK
U. UJ UJ

U_ -1 s:
Z) _1 3

CQ •"" Z

«\
oa -• r«* •o

<x
CKl

CW

o

UJ

_1 LU

CO _l
<c •-«

d — U.
UJ CK

t— <t 1—

a. ^• UJ X

i. _J LU

UJ «t •-. y—
t— UJ u. »- z o y-

-t •— »— •- Z
-J z X LU

z »—• UJ 1—

o CO ^— UJ CO
1—t •— CK _l »—•

CO X «t CO #—• X

CK 1— X •—• u. LU
UJ o X 1— 1

5. z Q y— X z
Z o <c LU o
o UJ z 1— z
<J CO CK •—•

CK CO <t
UJ UJ <t CK —•
o_ »- UJ X z >- <J o 1— t— •—•
•— -=t o <-> 1

CK -i z o
<t •a o CK — -3.

t— X h- «t UJ

•X cj X >- IK

a o o LU >- UJ M O
-J Z —1 -1 I—

-1 -=t CK «; z
o il y- o •—t Q
UJ UJ o UJ

-J o z> _i <t —
_l o o _) LU QC

•— V- >- —i CK 1-

X X

CO CO

a 2:
UJ X!

H 1— —1
-1 "~• OS

M
LU LU <a
z z a
o o

CK
CK CK o
O O Lu
Lc Ll_ c0|

M ai
Lc U_ -u « U. U_ u
O 3 -I ZJ

H- »— -* U4
CO CO a o>

X X z z
o <J •—• t—•

3 o
ZL ^ CK CK

O O

o o CK CK
o o CK CK
I— •- UJ LU

31

a
LU
CKJ

Cfi(
CKI
O)
CKJ

•a

cJI
cq

APPENDIX VII

MISCELLANY
64

A. OTHER RESERVED FUNCTIONS

DATA TYPE FUNCTION NAME ARGUMENTS NOTES

FIXED SIN FIXED; part of IT;
i.e. , .5 = 90° SINE

REAL SINR REAL number in radians SINE

FIXED COS FIXED; same as SIN COSINE

REAL COSR REAL number in radians COSINE

FIXED ATAN (AX, AY} both FIXED ARC TANGENT

REAL ATANR REAL number ARC TANGENT

FIXED SQRT FIXED SQUARE ROOT

REAL SQRTR REAL SQUARE ROOT

FIXED PYTHAG {X, Yj both FIXED computes SQR
{X2 + Y2]

REAL LOG REAL LOG10

REAL LOGE REAL LOGe

REAL EXP REAL ex

B. LEAP. BIN MODES

The "bin" command to VITAL may be followed by a vertical bar, and

an octal number.

1. I 1 causes the LABEL table to be Xeroxed

2. \ 2 causes the SYMBOL table to be Xeroxed

3. | 4 causes a formatted listing to be Xeroxed

4. | 10 disables the compilation of code to check subscript
bounds and SWITCH bounds.

5. 120 disables the compilation of code to check the data
type of LEAP items when y is used.

These mode numbers may be combined:

e.g. I 7 causes all three listings to be Xeroxed

C. SYNONYM FEATURE

One may define a synonym to a declared variable or to a procedure

in LEAP; for example, if XYZ is a declared variable or a procedure, then

W =XYZ:

65

is a DECLARATION which will assign the "semantics" of XYZ to W.

Subsequent reference to either XYZ or W will have identical meaning.

D. NO KEYBOARD BUFFER OPTION

The following declaration, occurring anywhere in a declaration

portion of a LEAP program, will suppress the assignment of a keyboard

buffer at run time:

NOKBBF;

E. SEGMENTING A LEAP PROGRAM DIRECTIVE

There is a feature in LEAP which allows the compilation of a

LEAP program from text files rather than from a VITAL directive. This is

useful if the directive is larger than two books, or if core space at com-

pile time is at a premium. Only one text file is set up at a time during

compilation.

Note that:

(1) The user cannot ask VITAL for a program listing, or for

a formatted listing.

(2) Compile-time error messages will usually be garbled.

The use of this feature is described below;

The user deals with his program in text file form.

He may direct the compiler to take its input from the keyboard,

and proceed to specify the text files which are to be read in.

The compilation is then performed.

The user directs the compiler's attention to the keyboard by ask-

ing to compile a program consisting of one special word:

GETFROMKB

He specifies that a text file be read in by typing the name of

66

the text file followed by the READ-IN key. For example, if

BLOP is a large program, having TAG as a label about half-

way through, then the following sequence of events in VITAL

will compile BLOP:

TYPED BY

SYSTEM

USER

USER

USER

USER

USER

SYSTEM

USER

USER

USER

USER

USER

USER

SYSTEM

CLEAN

^L 5LEAP

r>*C BLOP

~DIR F|| #-TAG

^DIR FF|| TAG- ?

AFRESH

FRESH

-INS #

GETFROMKB

m
•"-BBIN

F ®

FFH)

F. OTHER RESERVED PROCEDURES

1. SHADE;
This causes the user to go into the shade.

HELP;
This causes a HELP call.

3 . ASSIGNRECOGNEER (<TEXTARRAY >);

The TEXTARRAY parameter indicates the name of the

file which is to be used henceforth as the character recognizer.

4. There is a reserved procedure which calls the character

recognizer:* RECOGNIZE;

When this procedure is called, a full inking buffer should be

available, and the ASSIGNRECOGNEER procedure should

previously have been called.

cFor information on the TX-2 drawn character recognition facility, see
r<=>forvsn<-p 3_

67

The following reserved variables will be set up by the procedure:

character code (-1 if no recognition)
maximum X coordinate
minimum X coordinate
maximum Y coordinate
minimum Y coordinate
X coordinate of center
Y coordinate of center

aCHAR (INTEGER)
aXMAX (FIXED)
aXMIN (FIXED)
aYMAX (FIXED)
aYMIN (FIXED)
o-XCEN (FIXED)
aYCEN (FIXED)

EXAMPLE:

(reserved words are underlined)

START

INPUT (FILERECI;

ASSIGNRECOGNIZER {REC};

GETNEXTINT;

IF aCAUSE = 17. THEN

BEGIN

RECOGNIZE;

IF aCHAR = -1 THEN HELP;

END;

FINISH

5. A reserved procedure for "going up to" the character-recognition

trainer (5TRAIN). This procedure expects the ASSIGNRECOGNIZER procedure

to have previously been called.

TRAIN;

6. A procedure which takes a TEXTARRAY as a parameter, and "goes

up to" the scope editor

EDIT { < TEXTARRAY >};

68

7. Two reserved procedures for allocating and emptying books

at run time:

(a) FREEBOOK - an INTEGER function which requires no

parameters, and returns the number of an empty book

(1 thru 17) as its value.

Book 0 is automatically free for use; allocation of

other free books must be done through FREEBOOK.

(b) EMPTYBOOK f<INTEGER quantity > };

A procedure which causes the indicated book to be

emptied (JED 123).

8. KEYBOARDEDIT {<TEXTARRAY>] ; This calls the keyboard editor,

with the indicated TEXTARRAY as input. It works just like the

EDIT procedure.

9. BASICTRANSLATE [<TEXTARRAY >} ;

This passes the indicated text up to 5BTF.

69

G. EXTERNAL PROCEDURES

This is a facility for defining a procedure or function that during

run-time will exist outside the LEAP system. The experienced user will

find this useful in linking MARK 5 and LEAP programs. The following is

the external procedure declaration form:

EXTERNAL <LOC>, <normal procedure definition header>;

where LOC should be an octal integer constant defining the absolute

location of the procedure and a regular procedure definition follows.

Example: EXTERNAL 411. ,REAL PROCEDURE SUMSQ {REAL Al, A2};

defines the real function SUMSQ at location 411 with two real
o

arguments.

The calling sequence generated by LEAP is

JES1Q LOC

address of argument 1

address of argument 2

*

address of argument n

expected return point -

H. LIST OF RESERVED WORDS AND SYMBOLS

Note that all Mark 5 op-codes are also reserved words in LEAP.

70

2
UJ
a.
4

s, b
£ a *

a —• i- O

of a: 2r 3 >- Q
<x <i o n. H- Ul
cJuJco_ioa.ri.x 8
ddssssac £

a: —
9 fi
UJ o en i-

o co

s
G

fc £
o
-t
X &

A St

w t
•
UJ ^
Of •- O -I

X

o
!*s _i 55

3S5l2553g8(fi?2ii:^yi«!H!liSSef

3
fcj

3i«

Q
o
3
UJ :>

a
B£

UJ
a.
o UJ

w 3
UJ i-

00 IK w
z £ o 5 *
Uj O?

CO ul t~ 35 o
0£ t— cO UJ CO

d a UJ a: y o M CO < z u
O _l
co cj cj

o
cj

UJ
a

a;
Q UJ 15 u_ E

5 5

a: UJ
i z
X •—
CJ -J
I— »-
3 3
Q. Q.

a 5

o s
<

u:

£
o_

&
OUJUJUJ-iUJUJ—.t-CD
IL ii; u: u: «T OT 01 €0 «/} t—

to <

1J 6 3 o y d
co x o o o; z

i- t- f- 3

UJ
IX.

?-
y
&
lO UJ
UJ cO
*- 3 < — <

> 3 o

ct

i—•

z
§ UJ

UJ S ^ &
z

1— z «
CO

o 2 % •£
O
Z 3 3

co
UJ UJ

CJ

UJ
ct
o

co

UJ
3
Z UJ

P s
O UJ
CJ Q

UJ •— t— o
y- a: Q vj Q:

s e. a 2 £ ts
UJ _ x y % ssy
.5 u 2 ^ t^aa^ygc:
Z~OUJU-ZC0UJZOUJ3O333QUJLL1I-

ujuJu-u-O"— •—•-• i^^_is;za-Q_a-o_a:a;a:a<
o:

CJ

S 5
y & - ^
O «X UJ 3 5*

£ i *£ 47 £ 3
»- »- o <t _i x
uj ui x *- co UJ
CO CO </> to »— »—

a:
o
<x s

o o o o
sayy
«t n. UJ —•
O! >• 3) «
1-1-3 3

&5 UJ
3 a. t- UJ
0H 1- «t z

z i- 3 b >
CO o z — _1

o z z Ct Ul t- u. ui •—• •— -i t "Z. yj 1- O CO

2 » a y y s a o 32^
«i <i CO CJ <_> VJ Q Q UJ Ul u.

5
co n_
>2 z

5 % 0? ^ z
II Q. V I £ CO Q

{5ujdz:«£z';§
u_ o x •— —• "-• i^_i

CO

3
s UJ

1 £ o
^ UJ UJ y cO

X
«»» j ac

u. <t —i CJ Sr ?£ UJ z UJ 4 X

a: S3r^ a •— 1/J >
-too 5 h t- ui n:

•— «/> o t—
CJ >-

l- ^W!S5 5 o a UJ UJ ul Ei £ % 3 BJ
i: Z 0. 0. 0. Q_ a: (t a: a: CO CO CO CO CO t-

8

Ul

o z
E a.

CO a % Ul

s X

CO
Z

> >- CJ

" ci? co

W

(2 Q u.

CO CJ CJ

%
Ui 3 Z 3< O O O UJ ul u.

ss ^ ID CO »- n « u
Ul Ul «I UJ »- »-

*—
Ul V- z

!4? ^ ^2 s^u^s a b.

15 o — UJ 3 15 S »—
z

cjOZQfc0<3 t-
QiZOOitZO. UJ X

U. Q.
o o; x

S & 5 s 9 3 y S ffi % ° a. B936El!2t6 a 5 3, 3 C UJ to cE
O z cO >- Z O •! UJ

•• K -1 S Z
> o; 3
o ct 0_

_>
o_

OUJUIUJUJUJUJOt-
OCOiOiCiiUJcOcOcOtO

CO X o o
t- 1—

-J CO X UJ
t- 3 3 x

71

y
CO
1

s
UJ

ai z o
•I Ui < UJ t— ul x o n_ •- t—
3 £ ts PzzSigays
xi— ujt-caua-ZZ'5*tz
UI-JKV-X>--~ZHD

. t^ UJ
O UJ _l
U _J CO

i/) CO h- h h X

6

9

CO

3 UJ <t

hi 2 fc
X -X ^

<aK&23riE-2&z-5*a?
"UJOV<lQit-^>-UJ>-

3

a
as
S3

w a 9 2
»- X •—

a 5 a £ 2 o y
i y-> -

I- Z "> UJ </) X
iS 9 » & !j Vrd
•t'-'zaccoxvjxzuji— a:

o vc >- g
ill a: o — i- _i z
_1 rt o: 3 Z Z UJ
O* ui «M ^ 05 S <>* co o *£
»/> UJ CO CO »- O Z 3E CO O CJ
Z_IOZ_ICJ—,O£ t- o <* <
3 £ £ 2 Pfc^SSSy^

-I UJ
co UJ a -i

£ S £ £ •£ & 8 9
CJZ— <I>- l-~.OUJQ.UJ a: < Q zt-x<t2:co»-t->-
2 .fe 2 Si 5 *o2~t£uj°iA£ <j u»^i:io »-xo— ^ a. i- s
D Q O n rj Q Q OQ CQ <X} CQ CQ CQ

72

o
en zc >~
a
UJ

to
UJ

K

— - -wDUii.^ t* K m >- t> N a c asa w tO </> Z
«x ft. ft 1 = *•

73

HVAV|AI<>I"»K/W,-,0 III . - d) - >- « O

74

APPENDIX VIII

PRIMITIVES FOR DATA-STRUCTURING

This appendix presents a user's-eye view of the data-structuring

facilities in LEAP. The first part of the appendix is a condensation of
*

a paper on this topic, and is included here as a user's introduction to

these facilities. The remainder of the appendix is an annotated tabula-

tion of the language forms for data structuring.

Part I. Introduction to the Associative Sub-language

The basic data-structure entity used in LEAP is an associative

TRIPLE of the form

ATTRIBUTE of OBJECT is VALUE

(e.g. , FATHER of JOE is PETE). The data structure is a store of facts

in this form. The hash-coded nature of the data-structure makes it

amenable to paging techniques. Programming constructs are available

for creating, deleting, and searching for elements in the data store.

Of particular importance is the uniformity of the single data form used.

A LEAP user does not have to consider the details of a complex structure

in computer memory; he can concentrate on what he wishes to represent

and not how to represent it. The programming facilities available include

set-theoretic operations, a powerful fact search and retrieval facility,

and the ability to use a TRIPLE itself as a component of another TRIPLE.

In the discussion below, reserved words in the language are

underlined.

A. COMPONENTS OF A LEAP DATA STRUCTURE

Conceptually, a LEAP data structure consists of a universe of
•kic

ITEMS, a universe of TRIPLES, and a number of SETS.

1. ITEMS

An ITEM is an entity whose "internal identifier" (name) is manipu-

lated by the LEAP system. An ITEM may have an associated "datum",

this must be specified to have one of the data types of the base language,

* For further details, see references 4, 5, and 10

**Not to be confused with "display items".

75

which wo will refer to as "algebraic types." Some allowed algebraic

types are listed below

real *

integer

boolean

fixed

(real, integer, boolean, or fixed) array

For example, the declaration

real array item. LINE4 ;

would specify an entity, LINE4 , whose datum was an array of real

numbers, perhaps containing end-point coordinates. The LEAP language

contains elements which are used only as algebraic quantities, only as

names (ITEMs without algebraic type), and in both ways (ITEMs with

algebraic type).

The LEAP language has various statements for creating ITEMs

and entering them into the initially empty universe of ITEMs. Declaring

an ITEM will enter it at compile-time; the facilities for dynamically

entering a new ITEM at execution time are presented in Section B.

2. TRIPLES

The TRIPLE is an ordered collection of three ITEMs and is used

to represent a fact in the relational structure. A TRIPLE is created and

entered into the initially empty universe of TRIPLES via the MAKE state-

ment.

For example, if FATHER, JOHN, and PETE are ITEMs, then execution of

(1) make FATHER- JOHN s PETE; (read "FATHER of JOHN is PETE")

will add the indicated TRIPLE to the universe of TRIPLES. In (1),

and "=" are reserved symbols.

A TRIPLE may be removed from the universe of TRIPLES via the

ERASE statement;

(2) erase FATHER • JOHN = PETE ;

3. SETS

A SET is an unordered collection of ITEMs. SETs are created by

a SET declaration, (e.g. , set SONS;).

*In this appendix, reserved words are underlined.

76

initially, a SET is empty (has no ITEMs). An ITEM may be added

to a SET via the PUT statement:

(3) out JOE in SONS;

An ITEM may be removed from a SET via the REMOVE statement;

(4) remove JOE from SONS;

4. ITEMVARs (ITEM variables)

An ITEMVAR has an ITEM as its value. An ITEM (e.g. , JOE)

may be assigned to an ITEMVAR (e.g. , X) via the assignment statement:

(5) JOE - X;

X now "represents" the ITEM JOE in the sense that the following two

statements have the same meaning:

(5) make FATHER• TOE s PETE;

(7) make FATHER.X = PETE;

ITEMVARs may be declared with or without an algebraic type

(example: real itemvar X;). The algebraic type specification is necessary

in case it is ever desirable to retrieve the datum of the ITEM that is

currently represented by the ITEMVAR. In such a case, the system

assumes that the algebraic type of the ITEM represented is the same as

the algebraic type of the ITEMVAR.

An ITEMVAR may always be used in place of an ITEM.

5. LOCALS

A LOCAL also has an ITEM as its value. The LOCAL is used as

the iteration variable in the FOREACH statement. It is used as a "local

ITEMVAR" within the scope of this statement, hence its name. A dis-

cussion of the FOREACH statement and the use of LOCALS is presented in

Section G.

11

B. DYNAMIC CREATION AND DELETION OF ITEMs

1 . DYNAMIC ITEM CREATION

There are two ways to create new ITEMs dynamically (at execu-

tion time):

(a) via the statement

(3) new it em -. X;

where "X" is an ITEMVAR. This statement causes a new ITEM to be gener-

ated and assigned to the ITEMVAR and space allocated for its datum (unless

this is an array). The algebraic type of this datum is assumed to be the

same as the algebraic type of the ITEMVAR. If the ITEMVAR was not de-

clared with an algebraic type, then no space is allocated, and the new

ITEM is assumed to have no datum.

(b) via the unary operator, "n ". This operates on an arbitrary

algebraic expression and yields a new ITEM having the evaluated expression

as its datum.

2 . DYNAMIC ITEM DELETION

The following statement removes the ITEM represented by X from

the universe of ITEMs.

(9) reclaim X;

Execution of this statement causes the internal identifier of the indicated

ITEM to be placed on a list of available internal identifiers, and the stor-

age allocated for the datum of the ITEM (if any) to be returned to free

storage. ITEMs which were declared via an ITEM declaration may not be

deleted. It is the user's responsibility to make sure that an ITEM is not

a member of any SET nor a part of any TRIPLE when it is deleted.

C. THE ITEM EXPRESSION

Thus far, we have mentioned three ways to represent an ITEM:

(a) by a declared ITEM identifier

(b) by an ITEMVAR which has been assigned an ITEM

(c) by "n" applied to an algebraic expression.

78

Wc will classify these as "ITEM expressions." An ITEM expression /nav

always be used in place of an ITEM.

In addition, a TRIPLE form can be an ITEM expression. This fea-

ture allows the use of a TRIPLE as part of another TRIPLE. For example, the

following statement creates a TRIPLE which expresses the idea that "the

number of lines in a square is four":

(10) make NUMBER-(PART-SQUARES LINE) s n 4;

In (10), "NUMBER," "PART, ""SQUARE ", and "LINE" are ITEMs. The TRIPLE

PART• SQUARED LINE

should exist in the universe of TRIPLES before (10) is executed. The ITEM

"NUMBER" is meant to represent an attribute which applies to all part-whole

relationships.

D. SET EXPRESSIONS

A declared SET is a SET expression.

<P is a SET expression (the empty SET).

A list of ITEM expressions separated by commas, all enclosed

in brackets "{" and ")", is a SET expression (example: [PETE, JOE"!).

Two ITEM expressions combined by one of the binary associa-

tion operators (. , ', *) is a SET expression. The evaluation of these SET

expressions requires extracting information from the universe of triples, as

follows:

If A and B are the two specified ITEM expressions, then

(a) A-B is the SET of all X such that

A.B=X

(b) A'B is the SET of all X such that

A-X = B

(c) A*B is the SET of all X such that

X'AS B

The special reserved word ANY may De used in place of an ITEM expression

in a binary association operation, implying that any ITEM in the indicated

position will match.

79

Example:

(11) FATHER-ANY

is the SET of all fathers.

E. SET STATEMENTS

The SET ASSIGNMENT statement may be used to assign an ar-

bitrary SET expression to a declared SET, (e.g. , (12) SONS U BROTHERS - SONS)

There is a special statement in LEAP for performing a task for

each ITEM in a SET.

For example, if SONS is a SET and X is a LOCAL,

(13) foreach X in SONS do <STATEMENT> ;

will cause the <STATEMENT> to be executed once for each ITEM in the

SET. Before each iteration, the next ITEM in the SET is assigned to the

LOCAL. Within the scope of the FOREACH statement, the LOCAL behaves

like an ITEMVAR. A complete discussion of the FOREACH statement is

presented in Section G.

F. LEAP OPERATORS WHICH YIELD ALGEBRAIC RESULTS

The binary operators "e", "c" , and "=" and the unary operators

istriple , "Jj", and "y" yield algebraic results. Four of these operators

deal with SET expressions:

(a) <dTEM expression> e <SET expression> is a Boolean expression
which has the value TRUE if the indicated ITEM is a member of
the indicated SET, and FALSE otherwise.

(b) |! <SET expression> is an INTEGER expression whose value is
the number of ITEMs in the indicated SET.

(c) <SET expression> c <SET expression> is a Boolean expression
which has the value TRUE if the left operand is a subset of the
right operand, and FALSE otherwise.

(d) <SET expression> = <SET expression> is a Boolean expression
which has the value TRUE if the left operand equals the right
operand (i.e., the left SET is a subset of the right SET, and
vice versa), and FALSE otherwise.

80

The unary operator "y" (GAMMA) operates on an ITEM expression

to yield the datum of the indicated ITEM.

For example, if PETE is an INTEGER ITEM, then the following statement

assigns 40 as the datum of PETE:

(14) 40 -y PETE;

The unary operator istriple operates on a TRIPLE form to yield a

Boolean result. This result has the value TRUE if the indicated TRIPLE

exists in the store.

G. ASSOCIATIVE FOREACH STATEMENT

There is a special statement for retrieving information from the

universe of TRIPLES. It allows one to specify the context in which the in-

formation of interest is to be found rather than a procedure for finding that

information.

For example, the following finds PETE'S sons:

(15) foreach FATHER-X= PETE and

SEX.X= MALE do

<STATEMENT>;

In (15), X is a LOCAL.

There are two "context specifications" in (15):

(a) SEX-X= MALE

(b) FATHER. X = PETE

These serve to determine the collection of ITEMs represented by the LOCAL

X. An ITEM will be in this collection if and only if it satisfies all "context

specifications." In general, there may be many "context specifications" in

a FOREACH statement.

At execution time, a collection of ITEMs is calculated for the LOCAL

from the context specifications. The <STATEMENT> is then executed once

for each ITEM in this collection. Before each iteration, the next ITEM is

assigned to the LOCAL. Within the limits of the <STATEMENT> , the LOCAL

is treated like an ITEMVAR. The difference between an ITEMVAR and a

LOCAL is only that the LOCAL has special meaning within the FOREACH state-

81

ment and no meaning outside of this statement. An ITEM may be assigned

to a LOCAL only by the internal action of the FOREACH statement. This

action is said to "bind" the LOCAL. Within the FOREACH statement, the

LOCAL is termed "bound." Outside the FOREACH statement, the LOCAL

is undefined.

FOREACH statements may be nested; a LOCAL which has been

"bound" by a FOREACH statement is treated like an ITEMVAR everywhere

within the scope of that statement.

More than one LOCAL may be "bound" by a FOREACH statement.

In this case, if there are N LOCALS, then a collection of N-tuples of

ITEMs is calculated when the context specifications are processed. The

<STATEMENT> is executed once for each N-tuple in this collection; the

appropriate ITEMs are assigned to the appropriate LOCALS before each

iteration.

For example, the following statement would create all paternal grandfather

relationships:

foreach FATHER-X = Y

and FATHER-Y = Z do

make PGRFATHER-X = Z;

Usually, the three operands of a "context specification" of the

TRIPLE form may be any ITEM expressions. There are cases which are

ill-defined; the compiler makes the following restrictions;

(a) At least one operand must be a LOCAL which is being
"bound" by this statement.

(b) The three operands cannot all be LOCALS which are
being "bound."

(c) The item expression

n_<algebraic expression>

is not allowed.

The following constructs (specified in BNF) are other allowed

operands for a "context specification" of the TRIPLE form:

<other allowed operand> : : =

<ITEM expression> <binary association operator> <LOCAL> |

82

<LOCAL> <binary association operatorxlTEM expression> I

<ITEM expression> <binary association operator> <other
allowed operand>

An example of the use of these constructs follows. In this example there

are TRIPLES having the following forms:

ABOVE-SQUARE s [OBJECT]

PART-[OBJECT] = [LINE]

"ABOVE," "SQUARE," and "PART" are ITEMs, and "OBJECT" and "LINE"

represent the meaning of ITEMs found in the indicated context. The fol-

lowing statement will display all objects above the square;

(16) foreach ABOVE.SQUARE = PART ' Z do DISPLAY {YZ};

In (16), "Z" is a LOCAL with declared data-type REAL ARRAY, the DISPLAY

procedure expects a REAL ARRAY (representing a line) as a parameter, and

an ITEM which represents a line has a REAL ARRAY as its datum.

The statement (16) may be expressed another way:

(17) foreach PART-Y =Z and

ABOVE • S QUARE = Y do

DISPLAY fYZ];

In addition to the TRIPLE form the following construct is allowed

as a "context specification" in the associative FOREACH statement:

<LOCAL> in <SET expression>

This "context specification" restricts the collection of ITEMs represented

by the LOCAL by requiring that each such ITEM be an element in the SET

expression.

NOTE: Do not attempt to terminate a foreach statememt by a GOTO to a

label outside the scope of the statement.

83

tn
C -—<
3

—J

0
U
—I
CO

l
0
•a

g

c

ro

- c
c

03

CO

O
l-H

u
w

A

a

C
0) -a

o
w
iH

V

A
en
In
a)

c

-a

o

—H

V

c

3
—
ra
H
-c
c —

—^
c
c

t!

"N

> •—i

£ ro
CD 0

•*-» o
•w •—4

>.
c ro
a > ,_,
a, £ g ro
o
u a

0) 0)
•*->

U
O CD

c
rO

1_

CD
0) Or •a
o
o

CD CD
•4-J

c
XI •<-4 ^

0)

>1
ro
u

r0

>>
ro
S-,

10

X
CD

+-*

CD
C
(0

<—t

ro
CD
u

a
CD
+•>
c

•r4 J

1)

a

T3
CD
X

*4H

b4

CO
w
H
O

XI
(D

4-J
ID
O

r.
CD

X" £
--4

CD
1-.
CD CO

P
4->
CO

-C 4-1 C -a
4-J •~4 tfl

4-J --4 co
CO C CO 4-J

13 0) co
•~4

X! X>
--4 ID CO

XI • 1 X
CD

o it) C C
S
5

C ca O
--4

CD
4-1 2 CO

Co

2 c
--4

H
H CD

1-. w i—i (X H
i—i

CO
4-1
--4 5 8

0
XI
4-1

CD
C X

CD
i_ ca +->

to 0 ID

G Oi
CO

CD
3

0
CO

CD

0
•*->

C

J-J

CO
S-H

CD
C

ca
>
CD

0 CD
i- Cn

CO ^-^
CO

—4 •»-> CD

co
CO

U

a
—4
1-1

4-1
CO

CO

x:
o

*^4

XI
U

--4

x:

CO
--H

x:
u a --H £ -~i

eu O
4-J

x: x:

2 5 CD 5
H
co

•—1

4-1
c
CD

E
3

0

"a E
—i
1-4
4-1 E

CD

a E
x: >-. CD' CD CD t-. CD
-M 4-J 4-> XI

4-J

c

4-J +J 4-J

CO

T3

0>
l-i
ca

(D
x:

•^4 —4

-a
CD
x:

--4

-a
x: 4-J CD -—i CD 4-J CD

CD 4-> 4-J
C

+->
x: x; c <a E ID ID
o 4->

-<—* o CD o O
--4
XI

w
H
t—t

4-1
O
c
CO

—4

E
CD

4->
--4

+->
CO

-—<
X
C

--4

CD
x:

4-J
—i

X
C
o
u
CD
CO

—4
x
c

--4

CD
x:

£
CD

4-J

X
1-4

—4
X
C

•-4

CD
x;

4-J
4-1

51
CD

£
CO

>-4

x:
1-1

—4
4-1

4J

O

4-J

4-4
O

•^4
x:
4-J

4->

4-1
O

xj
4-J

E O CD +-> CD CD CD
(A x: 4-4 XI £ x: E x: E o

+-> -—1 4-> 3 4-4 a 4-J 3

CD
CO

4-J
C

E
3

CO
4-1
C

4-J
fD
X

CO
4-J
c

4-J

X
CO

4-J
C

4-J
CO

x
CO

CD
C

CD J-> CD 0 CD CD CD CD
co
CD

(13
X

CO

CD
x;
4-J

CO

CD
XI
4-J

CO

CD
x:
4-J !-, 1-1 1-4 U

ID a a a a
4-1 CD CD CD CD
—i IH IH 1-4 1-1

GO

O
i—i
C/Q
ra
W
CC
Cu
X w

:>
w

2
O

A
C
o

--4

CO , ,
CO

CD
i-i
a o

—4
X CO
CD CO

• E 0 u
CD CX
4-1 X
V 0

A *. £
C
o A 0

C 4-J
—4

CO o
••-*

V
CO CO III
CD
i-. A CO A a HJ 0 C
X < i-i

Q, O
CD o X

--4
CO

4-J o 0 CO
CD
co

1-1 £ A
0
IH

0

U o
a
o

--4
CO

CO

1-1
o

a
>
2

0
4->
-^4

V

n
(0
>
£
0

4-J

i-i
ID
>
£
0

+J
—4

V

a
X
0

£
0

4->
--4 A Ac d

CO

CO

CD !-•
a
X

CD
1-4
a
X
CD

U

H
H
i—i

2

o
-r-1

CO

CO

0
1-1
a
X
0

c

I o
-^4

CO

V

T

A
C
o

T

o

V

A
o

•H

o
—4
CO

co

0
i-i a

o
—4

CO

CO

0
1-4
Q.

o
—1

CO

CO

0
S-H

CD

1-4
CD

CO !-•
X3
CD

w
H

CO

0
IH a
X

-•-4
co
en
0

CO

CO

0
1-4

CO

CO

0 !-•
a

X
0

£

X
0

E
3
E

CD
4-J
c
V

CO

V

0 !-•
(D

0

fO
0

o
o

0

£
0

(X
X
0

4-»

X
0

£

X
0

£

0
4->

V

0
4-J
-~4

V

0
4-J
--4

V

CD
T3

CQ

V

4-J
--4

V
0
CO

0
4-J
—4

0
4-J
-—1 1 1 1—1

4-" c V V V V Fl CNI [co

85

co
w
O
2

_Q X X

C c c ---<
•~i ""'

••< >, 1- '

l—

X X
1—

X
CD

IH
CD

>> u
CD

III III 111 > > >
X X CO

O CD CD

• • . i-, u. Ui

(0 IU X o £ o

J* J* X c c c
4-<

4—» H-t

o
•i—i X 0 o -—* K

co
o
co

c
3 III c

3
III

c
3 III

o CD CD CD >.
CD

X CD rO

.a
-4-> x X X

rO X rO
X X

c
o c o

CO to CO co
••H X CO

j*
co ~x

"H o i« -*—' 0 o G o <D CD a
o 4-J

o 3 3 3 a CO 3 CO 3 CO

CD CO •—I •—(<—i -t-i •*-» •—i •*—*

c
o
c

CO ra (0 CO r0 CO CD "3
>

X

CD rO o
IH
o
c

X

CO

•a
0)

(1)

>

XI

>

X

>

X
*

>

X

CO CO >

X
*

CO

+-> -*-» +-* C ra a CO rO "rO ro
o
CO

o
co

CD
co 1~i •<-t •»H

CO

0
i—i
CO
CO

X
W

H
W
co

ca
X
CD

*J

O
co
V

A
i—

A
co
C A A A

IH
a
X
c

A

a

A
u
a

A
IH
a

A
IH

A A

O

co
IH
a

IH
-r->
C
CD

-a
••H

•4-J

•M
CD

X
o

X
CD

X
CD

a
X a

X
a
X

CO

a
X
CD

4-J

X
o

4->

X
CD

f0
n

£
CD

e
CD

B
CD

4-J

CD

+J
CD

CD

*•>
CD

CD

CD

CD
CO

CD
CO

o
CO

CD
CO

A
"H

V V V
CO

V <5
CO

V o

S
CD

£ V V
cr.

V V
1

• - * • - *
2
OS

CD 1 X A A A A A A
CO A A A A <D (-. IH IH !-• IH u,

0 13 u IH u, s- G a Q. a a a a
d* o a a a a a (0 X X X X X X

ra X X X X CD CD o CD CD CD CD
4-J CD CD o o •—i

w
-—1

V

1—1

o
o

CO

+->
CD
CO

CD
CO

+->
CD
CO

o
o

CQ

V

S
•rH

S
CD

S
o
+J

6
CD

•!->

£
CD

-4-J

1—1 V V V V V V V V V V V

86

co

O
i—i
CO
CO

O

CO
w
H
o
2

CD

o
E
CD 0

CD

4-> CD

ro
4-1

X)

CD

o X CD

E
ro
CO

•—I

0
x: 0

x:
4-1
O
1-4
CD

XJ

c
c 4->

CO

0
x:

t
CD
ex

CD
+->
(0
o

E
ro
en

CD

0

4->

4J

U
ro
X
0

4-1

o
+->
0
CO

4-1
O

o

0
X!
•M

—<
4-1
--H
•*->

c
CD
X

E
CD

+->

4-4
o

CD
en

CD
-C
+-•

c

c

cn

en

o
u a
CD
x;
+->

X
c

—1

CD
-C -(->
4-1

CD
l-i
ro

ca

o
c
0
u
ro

en

c
ro

+->
c
o
0

XJ

CO

ro
en

1-1 3
o
3
ii

+->
CO

C

CO

to

.—1
fO

C
S-i
CD

c

E
CD

--H

X

1-1
CD

XJ
E
3
C

4->

CD
Cn

-a

in

E
CD

+->
• —i CD

.—i

i-i

CO

ro
x:

E
CD

+->

o

£
3

+->
(0
X

E
CD

--*
o

4->

E
0

+->
—1

o

•1-1

CO
+->
0
CO

O s

cn
E
0

+->

0

+->
0
en

+->
4-1
0

. 1

0

ro
+->
ro
X

3

0

0
E
ro
a
-a

o
+-'
0
0
i-i

0
x;

CD CD CD
-M CD

CO
—i 0 • CD

CD
X CD 0 0 E 0

0 X

4-> 10 -i-> 03 x: -C CO X! +3 xj x: J3 ro -C en ro en
o O J-J +-> CD +-> 4-> •M +-' en •(-> 4_J ro o -

-.-1
-a X

4-1 CD
x:

4-1
•—1

i—i
a <+-< -^

en
•—1 4-1

—1
4-4
—4

4-1
0

4-1
-—4

4-4
•^1

-—4
-a

i-i
0

CD
3

c
-—I CD

3

c
•—1 w o M i-i w CD u w w x:

•M w ---1
1-1 W

en
3

p £> & _3 S5 1= p :=> ^>
"TO "Jo a; BJ OS ro Qi a; tt OS a!

• > > H H H > H H H H H

w
c^ Di
w W
O o
w w
H H
2 s

H
i-l
O
o
CQ

<
w

o
o
CQ

2
<
w

O
O
CQ

E
0

0
XI

0

>1

< < § 2
< <

a a a ^ a o o O o O o o o o O
CQ CQ CQ CQ CQ

x:

CO
c
o

—i
CO
en
0
i-i a
x
0

E
0

0
-C

o
5

en
O

CQ
W
O

2
as
O

1-
iX
X
0

E
0

+->
—H

V
III

A
i-,
a
X
0

E
A 0

• •^H A
1-4

X
0

V

A

t
0
a

+-> • o
0 ii u
ca 0, a
V X

0 V
A
IH
a
X

A

ii
a.

A

1-4

E
0

.V,

-S3I
A

i-i

A

S-i a 0 X cx a X
E
0

0 X X 0
-i-i 0 0 0 B

—1
0
en E ^4 E 0

V V 0
4->

1-1
+->

0 -t->

--H " ~ V
en

V

A
i-i a
x
0

£
0

A

i-i
a
x
0

0

A

u
a
x
0

E
0

v V

A

i-i a
x
0

£
0

V V

A

i-i a
x
0

0
en
V

A

1-4
a
x
0

0
CO

V

A

u
<x
X
0

+->
0
CO

V

U

A

ro
b
ro

X
0

-t-J
V

0
1-4

X

i-i
3

•M
u

0 2
0 en
en w
V

ro

0
o
ro
a.
c

x
0

0

I
x
i-i
o

X
0

0
eo
0
1-4

0
X!
H

00
u

O
2

EH

W

w

W

C

a o
X

X 0
"O

o 6 tu

Q)
o

•^4

03

4-> V U
CD

V E T3
0 V

o| u, *-• HH c
A >.
4-i
S-,

o
a
o

A >.

a
o

A

V a
V

c CD
Di •*->
/•H o
X 1—I
to o
r0 T3

6
0
co

"O
CD
i-.
10

i-H
o
CD
-a
V
£
o

a,
x
o

V
co
>
o
e
CO

6
ro
c

CJi
c

••-4

•a 4 '

(0 1_

*-> H3
u

-r-l

o

c

0

> CD

3

1H
0

T3
C 0) CO

IM

U
3

1-4 4-" • 3 •M is. CD
X

CO u CO

o

.—*
a

IM

CJ

•a
c

5
cu

3

CJ

3

4-»

CJ

s:
+->

o
4-»

4-4

x
en

3

CJ

3
4-4

u
CQ

CJ
C

•~4
^4

t3 IM 3 -•-> p u.
a 3 u (0 4-J o

CJ
O

3 >-,
4-»

0)

4-<

(0

T3

X)
• CD

CD >
*-• -4

u
£
CO

4W

c
CO c " xs -1 03 X IM

CJ

4-1

CO

CO
.—1

03

(0
4-1

c
.£ co

§•0
CJ

(0

IM

0
E
o

4-J a -a CO
IM

C CD
4-» •*-*

CJ
—4

X
c

CO
JS
44H

X
c

a CJ
-«-H

"cD

CJ

o
X)

1-4 3

4-»

O

0)
IM

0

co

CD
u
4-<

C
CD

CO

+-»

i- co m

3ro.H
-X)

CD fO c

.CO-—.
•*->

v ox;
O > 4->

4->

CJ

u
4-4

CO

10
4-4

a
N

---4
i 1

0

CD
C

10

CJ

rD
U

TJ
CD
>

03
•—4 iO a,

to 0
CD CO C

1
CD

C
•a (0 CD u a CD CD

.-o to u X! (0 W-. DI

CJ

(0
E

A

a
x
o
£ o

4—I
-.—I

V
HI

A

i->
a
x
CO

E
o
+•>

V

a
x
CD

E
CO
-t-1 -^
V

<T3

b
03

4->

X
CD

03

a)
3

CD
u
3

CD
u
3

o

0

2
o
5

+-•
w

CD

V
B

O
3

U
3
i-.

•t->

3 s
CO

T

E
0

V

E
CO

T3
CO CD C

(0 5 (0 0 CD

E
CD o

X)
f-H
o

CD
C

CD

10
>
S
CD

*-»
-w
V
T

A

u
a
x
CD

E
CD

0

CJ
CO

-o
O

'ro
U

-D
C

0
.C

CO

E
0

CD •
C •*
O %

c £
D> CD

CO —c
CO
(0

0
CO

X
0
S-.

(0
.—i

CJ
0
-v
V

T
A
i-. a
x
0

+->
0
(0
V

>
£
0

v
©
a
x
0
4->

0
CO

V

6
c
0
£
0
-t-i

(0
*J
CO
V
O
X

X
u
fO
V

J=.
u
03
0
u
o

0

5

X u
01

A ~
u
•03
V

X
c
03

co
-r-4 ^-^
X
IM
(0
V

A
X

03
V

CO

10
V

X
0

E
0

A

A
IM

X
U 0 c

A X E
i- 0 0
C 4^ t!
X 0 V
0 to

c V &
03
0 •si 5
o
o

A
»—4

03

V

A
•—i

C2 U 03
V _0 U

X! v O
r—1

X
C V
03

A
——

A
co

—i
03
O
o

co A.

H g. o
V

A
V
A

T3
IM
0)

V

A

a
x
0

£
0

A

IM
a
x
0

E
0

4-J
-*M

V

II

A
•a

IM

03
V

u a
x
0

E
0

A

IM a.
X

U m s

fO
II V

:: ^ ii

IM 03 m .a
V V

88

NOTES:

(1) Items, properties, and locals may be declared only at the

beginning of a LEAP program.

(2) The word useleap must follow start in every LEAP program

in which the associative sublanguage is used.

(3) When a procedure is declared, one can specify either an

item or an itemvar as a parameter; the first specifies a value parameter,

the second a reference parameter. One can pass any item expression

as an item parameter; only an itemvar may be passed as an itemvar pa-

rameter.

(4) There is a facility for binding locals with an arbitrary Boolean

expression in the upper part of the foreach statement. A Boolean ex-

pression in this context must be preceded by andb. Example:

foreach X in S andb y X<6do. . .

(5) There is a facility for declaring and using up to six "properties'

in LEAP. A property may be assigned to or removed from an item, if the

item has a datum. Also, one may ask if a specified item has a specified

property.

Examples:

begin

real itemvar X;

set S;

property A, B;

real local Y;

newitem - X;

assign A _to X;

foreach Y _in S do

if Y is A then delete A from X;

end

89

(6) When using writostructure and road structure, the user should

be careful that the program in which a structure is written should be

"compatible" with the program in which the structure is read. This simply

means that the item declarations in the two programs should correspond.

Since there is no symbolic communication between LEAP programs, only

the order of declaration of items, the data-type of the corresponding

items, and the total number of declared items should match.

(7) The merge structure statement allows the user to merge

"compatible" LEAP data structures.

Example:

mergestructure 'ABC;

when this statement is executed, the structure named 'ABC will be

appended to the current structure in the following way:

(a) All items in 'ABC except those declared with no data-

type will be added as new items to the store of items, and

(b) All triples in 'ABC will be adjusted to preserve the relations

between these new items and then will be added to the

store of triples.

Note that both the current structure and the structure to be merged should

have no items which were declared with a data type.

(8) itemvars are treated as simple variables (e.g. real) in declar-

ations (i.e. the existence of an itemvar declaration in a compound statement

does not make the compound statement a BLOCK).

(9) sets are treated as dynamic variables in declarations.

90

APPENDIX DC

PRIMITIVES FOR TEXT AND FILE MANIPULATION

This appendix describes a set of reserved procedures

for manipulating textarrays and APEX files. The names of

files are textarrays containing the text of the name. Procedures

are provided for setting up files, reporting which files are set

up, setting and reporting file status information, reading and

writing text files, and combining textarrays.

A flexible error handling facility has been implemented to

allow for the variety of errors that can occur. Should an error

occur, a jump to the label at the top of a stack will be executed

after the reserved variables aROUTINECODE and aFILEERRORCODE

have been set to indicate the cause of the error. Initially, the

stack contains a jump to an internal routine which prints a

"canned" message regarding the source of the error and then calls

help. The user, however, may push and pop this stack of error

labels to set his own handling of errors in various parts of his

program.

91

A description of the routines and reserved variables follows:

SETUPTEMPFILE {LENGTH, BOOK};

This routine sets up a non-executable, auto-expandable, ephemeral file

of LENGTH pages in the specified book. The reserved textarray variable

a FILENAME is set to the name of the file (e.g., '43E201763').

SETUPFILE (NAME, BOOK"*;

This routine sets up the indicated file in the specified book using the

status information in the directory. If the file doesn't exist, an error is signalled.

SETUPANDNAMEFILE {NAME, LENGTH, BOOKV,

This routine sets up a new file with the indicated name, status non-

executable, auto-expandable, of LENGTH pages, in the specified book. Any

previous uses of the name are dropped.

WHATSIN fBOOK, MAP, NAM El;

This routine sets NAME to the name of the file in the specified book

and map. If that slot is empty, NAME is set to the null textarray (i.e., ' ').

SETSTATUSOF {NAME, WHICH 1;

The status of the file NAME is set to be the status specified by the

integer WHICH; typically this is an "OR'ing" of the following reserved variables:

^EXECUTABLE ^NONEXECUTABLE
PWRITEABLE ^READONLY
PUNPROTECT pPROTECT
^EXPANDABLE 3NONEXPANDABLE
3LENGTH (Set length to aLENGTH pages).
^DATATYPE (Set datatype to a DATATYPE).

examples: Set the status of file RR to be Read-Only and 10 pages in length. Leave

other status information unchanged.

10- aLENGTH;

SETSTATUSOF {'RR', pREADONLYv 3LENGTH};

REPORTSTATUSOF fNAME};

The status of the file NAME is used to set the values of the following

reserved variables:

92

^SUMMARY INTEGER

aLENGTH

^DATATYPE

aWHICH

^EXECUTABLE

aWRITEABLE

^PROTECT

^EXPANDABLE

INTEGER

INTEGER

INTEGER

BOOLEAN

BOOLEAN

BOOLEAN-

BOOLEAN

1 LEGAL DEFINED FILE
0 LEGAL DIRECTORY NAME,

BUT NOT DEFINED
-1 NOT LEGAL DIRECTORY NAME

No. of PAGES

DATATYPE, VALUES HAVE THE
FOLLOWING MEANINGS:

0
1
2
3
4

5
6

9
10
11

- UNSPECIFIED (BINARY)
- LINCOLNWRITER TEXT
- PROCESS
- ARRAY
- LIBRARY FILE
- MK4/5 DIRECTIVE
- USER DIRECTORY
- TABLET RECOGNIZER DICTIONARY
- EXTENDED LINCOLNWRITER TEXT

FILE
- RELOCATABLE BINARY
- TAP ASSEMBLER DICTIONARY
- COMPILED REGULAR EXPRESSION

This, if supplied in a SETSTATUSQF
would set status identical to this file.

e.g., To set file RR to identical status
with file RA, except that RR is one
page longer, the following code would
be written:

REPORTSTATUSOF {'RA'};
^LENGTH + 1 - ^LENGTH;
SETSTATUSOF {'RR', aWHICH};

READTF (NAME, TAl;

The contents of the textarrav' TA is set to oe the contents of the text file

NAME.

OPENTF;

Prepares to ouild a new text file. Onl one text file may be under construction

(i.e., open) at one time.

93

CLOSETF {NAME} ;

Close the current text file and name it NAME.

PUTCHARINTF {iNTGRl;

Puts the character INTGR into the next character location in the open text

file.

PUTTAINTF {TA} ;

Appends the indicated text to the open text file.

APPEND (A, B, C] ;

The textarray B is appended to the textarray A and the result is put into text-

array C. Any two or all three may be the same textarray or the null textarray.

PUSHFILEERRORLABEL {LABEL};

If an error is discovered in the file package, or a DOFILEERROR is executed,

control will be passed to the last LABEL pushed. The reserved variables

o'ROUTINECODE and aFILEERRORCODE will be set to indicate the cause of the

error. These variables are volatile over any reserved procedure and should thus

be saved quickly. If no error is detected in a reserved procedure, the values of

aROUTINECODE and aFILEERRORCODE are not defined. aROUTINECODE and

aFILEERRORCODE are safe over the following reserved procedures:

PUSHFILEERRORLABEL, POPFILEERRORLABEL.

POPFILEERRORLABEL;

Cancels the last PUSHFILEERRORLABEL executed. If you try to POP too

far, the top of the stack will contain its initial value, namely a label of routine which

types the cause of the error and then calls help.

DOFILEERROR {ROUTINECODE, FILEERRORCODE"';

Sets the reserved variables aROUTINECODE and aFILEERRORCODE to

the specified values and then jumps to the last label pushed onto the file error label

stack.

94

TYPEERROR;

This routine takes the values in aROUTINECODE and aFILEERRORCODE

and uses them to print a canned message as to the cause of the error.

RESERVED VARIABLE DATA TYPE COMMENTS

YTFCOUNT

c*ROUTINECODE

aFILEERRORCODE

^FILENAME

^DATATYPE

^LENGTH

^SUMMARY

aWHICH

^EXECUTABLE

^EXPANDABLE

aWRITEABLE

aPROTECT

otMAP

^CONSOLE

INTEGER

INTEGER

INTEGER

TEXTARRAY

INTEGER

INTEGER

INTEGER

INTEGER

BOOLEAN

BOOLEAN

BOOLEAN

BOOLEAN

INTEGER

INTEGER

contains number of characters
inserted into currently open
text file. Contains -1 if no
text file currently open.

See discussion at PUSHFILE-
ERRORLABEL and listing
of errors.

Set to the name of the file set
up by the last SETUPTEMPFILE.

See REPORTSTATUSOF

Set at initialization to the
number of the map the user
is running on.

Set at initialization to the
number of the console on which
the user is running.

95

REFERENCES

1) Blatt, H. , "Conic Display Generator Using Multiple Digital-Analog
Decoders:" PROC FJCC (1967).

2) Clark, W. A. et. al., "The Lincoln TX-2 Computer", Proc. Western
JCC (February 1957).

3) Curry, J. E. , "A Tablet Input Facility for an Interactive Graphics
System", PROC of International Conference on Artificial Intelligence,
Washington, D. C. (May 1969).

4) Feldman, J. A. and Rovner, P. D., "An ALGOL-Based Associative
Language", CACM (August 19 69).

5) Feldman, J. A., "Aspects of Associative Processing", Technical Note
1965-13, Lincoln Laboratory, M.I.T. (21 April 1965), DDC AD-614634

6) Forgie, J. W. , "A Time and Memory Sharing Executive Program for
Quick-Response on-line Applications", PROC. FJCC (1965).

7) Mondshein, L. F. , "VITAL Compiler-Compiler System Reference
Manual", Technical Note 1967-12, Lincoln Laboratory, M.I.T.
(8 February 1967), DDC AD-649140.

8) Naur, P. et. al. , "Revised Report on the Algorithmic Language
ALGOL-60. CACM (January 1963).

9) Roberts, L. G., "Homogeneous Matrix Representation and
Manipulation of N-Dimensional Constructs", The Computer
Display Review, published by Keydata Associates, Bedford,
Massachusetts .

10) Rovner, P. D. and Feldman, J. A. , "The LEAP Language and
Data Structure", IFIP Congress 1968 (August 1968).

11) Sutherland, W. R. et. al. , "Graphics in Time-Sharing: A
Summary of the TX-2 Experience" PROC SJCC (1969).

12) Teixera, J. F. and Sallen, R. P., "The Sylvania Data Tablet",
Proc. SJCC (1968).

UNCLASSIFIED 9b

Security Classification

DOCUMENT CONTROL DATA - R&D
(Security classification of title, body of abstract and indexing annotation-must be entered when the overall report is classified)

I. ORIGINATING ACTIVITY (Corporate author)

Lincoln Laboratory, M.I.T.

2a. REPORT SECURITY CLASSIFICATION

Unclassified
2b. GROUP

None
3. REPORT TITLE

The LEAP User's Manual

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Lincoln Manual

S. AUTHORISI (Last namp, first name, initial)

Rovner, Paul D.

6. REPORT DATE

11 September 1970
7a. TOTAL NO. OF PAGES

100

7b. NO. OF REFS

12

Ba. CONTRACT OR GRANT NO. AF 19(628)"5167

b. PROJECT NO. ARPA Order 691

9a. ORIGINATOR'S REPORT NUMBER(S)

Lincoln Manual 93

96. OTHER REPORT NOISI (Any other numbers that may be
assigned this report)

ESD-TR-70-256

10. AVAILABILITY/LIMITATION NOTICES

This document has been approved for public release and sale; its distribution is unlimited.

II. SUPPLEMENTARY NOTES

None

12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency,
Department of Defense

13. ABSTRACT

This document is a user's manual for the LEAP language. LEAP is an extended algebraic
programming language which is similar in form to ALGOL.8 Extensions include language forms
for display output and interactive input and facilities for building and manipulating associative
information structures. The basic algebraic language is described in Sections I through IX;
the extensions to LEAP are presented in the Appendices.

14. KEY WORDS

computer language LEAP language extended algebraic language

UNCLASSIFIED
Security Classification

